
Overuse of biocides increased the risk of tobramycin E. coli resistance / Guergueb and Alloui _____________________________________
6 of 7
[5]  CHEN, B.; HAN, J.; DAI, H.; JIA, P. Biocide-tolerance and antibiotic-
resistance in community environments and risk of direct transfers 
to humans: Unintended consequences of community-wide 
surface disinfecting during COVID-19? Environm. Pollution. 283: 
117074. 2021.
[6]  DONAGHY, J.A.; JAGADEESAN, B.; GOODBURN, K.; GRUNWALD, 
L.; JENSEN, O.N.; JESPERS, A.D.; KANAGACHANDRAN, K.; 
LAFFORGUE, H.; SEEFELDER, W.; QUENTIN, M.C. Relationship of 
sanitizers, disinfectants, and cleaning agents with antimicrobial 
resistance. J. Food Prot. 82(5): 889–890. 2019.
[7]  DUFORT-ROULEAU, C.; CARIGNAN, A.; BELOIN-JUBINVILLE, 
B.; LONGPRE, A.A.; DION, J.; LEGELEUX, L.; GILBERT, M. La 
substitution de la gentamicine par la Tobramycine en contexte 
de pénurie : évaluation de l’impact sur la résistance bactérienne. 
Pharmactuel. 53(1): 17–22. 2020.
[8]  DUZE, S.T.; MARIMANI, M.; PATEL, M. Tolerance of Listeria 
monocytogenes to biocides used in food processing environments. 
Food Microbiol. 97: 103758. 2021.
[9]  FOOD AND DRUG ADMINISTRATION (FDA). 2018. BAM Chapter 
4: Enumeration of Escherichia coli and the Coliform Bacteria. 
Bacteriological Analytical Manual (BAM). Food and Drug 
Administration (FDA). Online: https://bit.ly/3X1KSTf. 01/01/2018.
[10]  FORBES, S.; DOBSON, C.B.; HUMPHREYS, G.J.; MCBAIN, 
A.J. Transient and sustained bacterial adaptation following 
repeated sublethal exposure to microbicides and a novel human 
antimicrobial peptide. Antimicrobial Agents Chemotherapy. 
58(10): 5809–5817. 2014.
[11]  GADEA, R.; FUENTES, M.Á.F.; PULIDO, R.P.; GÁLVEZ, A.; ORTEGA, 
E. Effects of exposure to quaternary-ammonium-based biocides 
on antimicrobial susceptibility and tolerance to physical stresses 
in bacteria from organic foods. Food Microbiol. 63: 58–71. 2017.
[12]  GUERGUEB, N.; ALLOUI, N.; AYACHI, A.; AOUN, L.; CHACHOUA, I. 
Factors Associated with Bacterial Contamination of Poultry 
Meat at Butcher Shops in Biskra, Algeria. Vet. Stanica. 52(4): 
429–437. 2021.
[13]  HAMADOUCHE, M.; ALLOUCHE, S. Assessment of preventive 
measures application against Covid-19 in the workplace. 
Evaluation de l’application des mesures préventives contre 
la Covid-19 en milieu de travail. La Tunisie Medicale. 98(08): 
625–632. 2020.
[14]  INTERNATIONAL BUSINESS MACHINES (IBM). Released 2012. 
IBM SPSSStatistics for Windows. Version 21.0. Armonk, NY. 2012.
[15]  KAMPF, G. Biocidal agents used for disinfection can enhance 
antibiotic resistance in gram-negative species. Antibiotics. 
7(4): 110. 2018.
[16]  KOCÚREKOVÁ, T.; KARAHUTOVÁ, L.; BUJŇÁKOVÁ, D. Antimicrobial 
Susceptibility and Detection of Virulence-Associated Genes 
in Escherichia coli strains isolated from commercial broilers. 
Antibiotics. 10(11): 1303. 2021.
[17]  MAILLARD, J.Y. Resistance of bacteria to biocides. Microbiol. 
Spectr. 6(2): 6.2.19 2018.
[18]  MARSHALL, B.M.; LEVY, S.B. Food animals and antimicrobials: 
impacts on human health. Clin. Microbiol. Rev. 24(4): 718–733. 2011.
[19]  MINISTRY OF AGRICULTURE AND RURAL DEVELOPMENT OF 
ALGERIA (MARD). List of medicines for veterinary use registered 
as of 24/10/2018. 57 pp. 2018.
[20]  MORENTE, E.O.; FERNÁNDEZ-FUENTES, M.A.; BURGOS, M.J.G.; 
ABRIOUEL, H.; PULIDO, R.P.; GALVEZ, A. Biocide tolerance in 
bacteria. Intern. J. Food Microbiol. 162(1): 3–25. 2013.
[21]  NHUNG, N.T.; CHANSIRIPORNCHAI, N.; CARRIQUE-MAS, J.J. 
Antimicrobial resistance in bacterial poultry pathogens: a 
review. Front. Vet. Sci. 126(4): 1–17. 2017.
[22]  NICHOLS, D.P.; HAPPOLDT, C.L.; BRATCHER, P.E.; CACERES, 
S.M.; CHMIEL, J.F.; MALCOLM, K.C.; SAAVEDRA, M.T.; SAIMAN, 
S.; JENNIFER L. TAYLOR-COUSAR, J.L.; NICK, J.A. Impact of 
azithromycin on the clinical and antimicrobial effectiveness of 
tobramycin in the treatment of cystic brosis. J. Cystic Fibrosis. 
16(3): 358–366. 2017.
[23]   ALGERIAN DEMOCRATIC AND POPULAR REPUBLIC OFFICIAL 
JOURNAL. Executive Decree No. 20-159 of June 13, 2020 on the 
reorganization of home connement and the measures taken 
within the framework of the prevention and control system 
against the spread of Coronavirus (COVID-19), Art 12. N° 35,18. 
2020. Online: https://bit.ly/3YmDlj1. 30/10/2020.
[24] O'NEILL, J. Tackling drug-resistant infections globally: nal 
report and recommendations. 2016. Pubkisher Government 
of the United Kingdom. United Kingdom. Online: https://bit.
ly/3X4SaFO. 12/11/2020.
[25]  ONICIUC, E.A.; LIKOTRAFITI, E.; ALVAREZ-MOLINA, A.; PRIETO, 
M.; LÓPEZ, M.; ALVAREZ-ORDÓÑEZ, A. Food processing as a risk 
factor for antimicrobial resistance spread along the food chain. 
Curr. Opinion Food Sci. 30: 21–26. 2019.
[26]  R CORE TEAM . R: A language and environment for statistical 
computing. R Foundation for Statistical Computing, Vienna, 
Austria.2021.
[27]  RIZVI, S.G.; AHAMMAD, S.Z. COVID-19 and antimicrobial resistance: 
A cross-study. Sci. Total Environm. 807: 150873. 2022.
[28]  SENAPATI, I.A.; MISHRA, R.; KUNDU, A.K.; MISHRA, B.P.; RATH, 
P.K. Prevalence and Characterization of Escherichia coli from 
Poultry Meat in Bhubaneswar. Intern. J. Curr. Microbiol. App. 
Sci. 9(9): 2047–2055. 2020.
[29]  SOCIETE FRANÇAISE DE MICROBIOLOGIE. CASFM/EUCAST (Comité 
de l’Antibiogramme de la Société Françaisede Microbiologie/
European Committee on Antimicrobial Susceptibility Testing 
guidelines). Recommendations 2019 V.2.0 Mai. 144 pp. 2019. 
[30]  SOCIETE FRANÇAISE DE MICROBIOLOGIE. 2020. CASFM/
EUCAST (Comité de l’Antibiogramme de la Société Françaisede 
Microbiologie/European Committee on Antimicrobial Susceptibility 
Testing guidelines). Recommendations 2020 V.1.1 Avril. 181 pp. 2020.
[31]  THOMAS IV, J.C.; OLADEINDE, A.; KIERAN, T.J.; FINGER JR, J.W.; 
BAYONA‐VÁSQUEZ, N.J.; CARTEE, J.C.; BEASLEY, J.C.; SEAMAN, 
J.C.; MCARTHUR, J.V.; RHODES JR, O.E.; GLENN, T.C. Co‐occurrence 
of antibiotic, biocide, and heavy metal resistance genes in bacteria 
from metal and radionuclide contaminated soils at the Savannah 
River Site. Microbial. Biotechnol. 13(4): 1179–1200. 2020.