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Abstract

We provide an Effective Potential Formulation for non-coupled (i.e. independent) Stochas-
tic Partial Differential Equations with additive noise using the Hojman et al. method for writting
the associated Lagrangean function. We show that this Potential is able to reproduce all the
dynamics of the system, once a special differential operator has been applied. This procedure
can be used to study the equilibria cases, the complete time evolution and spatial inhomogenei-
ties of the system under consideration.
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Potencial efectivo para ecuaciones parciales diferenciales
estocásticas no-locales

Resumen

Se provee una formulación de potencial efectivo para ecuaciones diferenciales parciales
estocásticas no acopladas (i.e. independientes) con ruido aditivo, usando el método de Hojman
et al., para escribir la función lagrangiana asociada. Se muestra que este potencial permite re-
producir toda la dinámica del sistema. Este procedimiento es usado para estudiar los casos de
equilibrio, la evolución completa en el tiempo y las inhomogeneidades espaciales del sistema
bajo consideración.

Palabras claves: ecuaciones diferenciales parciales estocásticas, potencial efectivo.

1. Introduction

There exists a wide spectrum of phe-
nomena (1-6) for which self-regulation, os-
cil lation, adaptiveness and multi-
equilibrium behaviours can be adequately
modeled by means of stochastic partial dif-

ferential equations (SPDE). Due to its impor-
tance and versatility, efforts have been made
to find a formalism from which all the rele-
vant physical information of the system can
be obtained (7-12).
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It is widely accepted that a variational
principle cannot be constructed for an arbi-
trary differential equation (13). There is a
strict mathematical theorem that shows its
existence for a given situation, and whose
application reduces the number of equa-
tions in physics that have a Lagrangean-
Hamiltonian formulation (14,15). However,
there are several methods in the literature
devised to circumvent this condition and
even some proposals for modified varia-
tional principles (13, 16-18). Another ap-
proach, that has its historical origin in the
times of Helmholtz (19), consists in study-
ing the existence and uniqueness (or multi-
plicity) of Lagrangeans for systems of differ-
ential equations (20, 21). One important re-
sult in this field is that of Hojman et al. (22),
who have proven that it is possible to con-
struct the Lagrangean for any regular me-
chanical system as a linear combination of
its own equations of motion. This particular
construction is much wider than the tradi-
tional definition L=T-V, which is only true
when the “forces” involved are derivable
from position-dependent potentials (or in
some cases from velocity-dependent poten-
tials), therefore it may be used for general
non-conservative systems. Its application
to the study of SPDEs may provide addi-
tional understanding of the internal struc-
ture of these phenomena and also enables
the use of a well known mathematical ma-
chinery to find conserved quantities, equi-
libria and stability cases, and other dy-
namical properties. To view an example of
the application of this method to self-
regulated systems, refer to (23).

The aim of this paper is to provide an
alternative procedure to find effective poten-
tials associated to SPDEs with arbitrary ad-
ditive noise function via a variational for-
malism constructed by means of the Ho-
jman et al. method.

2. Variational Approach
We will consider in this work SPDEs

that can be written as

� � �8 � 8
i i j i
� � �9 0 [1]

for i,j=1,...,m where m is the number of de-
grees of freedom, 8 8

i i jq t' ( , ) denotes the
components of a vector field whose argu-
ments are, in the general case, spatial coor-
dinatesq j and time t;� is an arbitrary linear
space or time (or both) differential operator
that does not depend on the field 8 � 8

i i j; ( )
is any, ussually non-linear, deterministic
forcing term and 9 9

i i jq t' ( , ) is a random
function of its arguments describing the sto-
chastic force (noise) in the system. Hereafter,
Einstein summation convention and Euclid-
ian metric tensor are assumed (table 1).

The equation of motion for a mechani-
cal system arises from a set of m differential
equations. Whereas the equations [1] can be
understood as equations of motion in a
variational sense, it is possible to write

G F ti i i
' � �

�� ( � , , , , )8 8 8 8
j j j
�	 0 [2]

where Fi behaves as “forces” (both determi-
nistic and stochastic) divided by unitary
mass and may include spatial derivatives of
the field; the dot means total temporal de-
rivative.

In the Inverse Problem of the Varia-
tional Calculus the Lagrangean L t( � , , )8 8

i i is
constructed such that relations [2] can be ef-
fectively deduced via Euler-Lagrange equa-
tions. The existence of such a Lagrangean is
studied using the Helmholtz conditions.
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Some Operators and Dissipation Functions.
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Nevertheless, these conditions do not
give any warranty about uniqueness. Two
Lagrangeans are said to be solution-
equivalent (or s-equivalent) if they differ only
by a global multiplicative constant, η, and a
total time derivative of some gauge
� �7 8 8

A� , ,i t :

�L L
d

dt
� �

~ 7

[4]

The different systems of equations they
provide, however, have exactly the same
equations of motion.

The Hojman et al. method enables us to
write L as a linear combination of the known
equations of motion; then for i,j=1,...,m,

1 2
~

��L m Fi
i i

� �8 [5]

where
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In equation [6] the quantities under par-
tial derivative ( )D m2 are constants of motion of
the system, while the corresponding coeffi-
cients ( )D m2 1� are arbitrary functions whose
arguments are constants of motion. There are
plenty of ways to write these ( )D m2 functions.
For instance, one possible form for the ( )D m2 1�

functions, given the ( )D m2 conserved quan-
tities, is presented in reference (20).

It is important to remark that this
method is useful for both second-order and
first-order differential equations (22). For
further details the reader is exhorted to re-
view (20, 22) and the references therein.

By virtue of equation [5], the general La-
grangean for SPDEs of the form [1] can be
written as

L i i
� 5 �( )8 ��

i i
9 [8]

where the 5
i parameters must be deter-

mined for each case in study.

Once the Lagrangian [8] is completely
determined, the corresponding Hamiltonian
can be found trivially by the usual Legendre
transformation, and, as will be shown in the
following lines, also the effective potential
can be written straightforwardly.

3. The Effective Potential

For the sake of simplicity, in what fol-
lows we will consider the cases for which the

derivatives
d

d

i

j

8

8

are always zero.

Let us define now the following differen-
tial operator

*
�
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[9]

Then, let require that the effective po-
tential, Veff , be such that

*� ��i eff iV F [10]

Note that if V V teff eff
i i

� ( � , , )8 8 , then

d
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[11]

and thus, in the conservative case, i.e.
V V Veff eff" "( )8 , equation [10] provides
(from now on the symbol indicates that the
relation is valid only in special cases)

*� " ��i eff iV F
�

�C

V
i [12]

which is equivalent to the standard relation
� ��i iV F when the vector field8 i coincides
with the spatial coordinate qi .
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Now, we are interested in finding a
gauge 7� � such that equations [8] and [5]
provide an s-equivalent Lagrangean, L, that
can be written as the difference between
some function (kinetic energy) T eff and the
effective potential Veff . In consequence (for
the sake of simplicity, ��1)

V T
d

dteff eff i
i i i

� � 5 � � �( )8 � 9

�

[13]

For a general non-conservative system,
T eff can be written as (25)

T A B Ceff
i i i i

i
i

� � �D E �( ) ( � , ) ( � � , )8 8 8 8 8 8 [14]

and thus, it is necessary to determine the
scalars D E �, , and the functions
A B Gi i i i i( ), ( � , ), ( � � , )8 8 8 8 8 8i to completely

define Veff .

It should be useful to write the kinetic
energy of the system in the traditional quad-
ratic form

Teff "
1
2

1
1

� �C C [15]

In order to do so, it is necessary to find
the corresponding gauge first. Equation [10]
provides the necessary constraint; thus, by
taking the nabla-star derivative at both
sides of equation [13] we obtain, for non-
coupled equations,

� � � �* ��
� � 5 � �

+

,
-

.

/
0
�� �

d

dt
Fj

i i i
i

�

98 � 8i [16]

Solving this equation for the time de-
rivative of the gauge λ, we have

d

dt
F dt Vi

i i
i i i�

9�� � � 5 � � �*8 8 8 �( �� ) ( )
i 0 [17]

where V0 is an arbitrary constant of integra-
tion. Consequently, following equation [13]

V V F dteff
i

i
i

i i� � � �*0

1
2

� � ( �� )8 8 8 8 [18]

which is the general effective potential for
equation [1] given the choice [15] for the ki-
netic energy.

4. Concluding Remarks

In summary, we have presented in this
work a novel way to provide both variational
and effective potential formulations for gen-
eral SPDEs with arbitrary additive noise
function. There are several useful applica-
tions of this result. Once the Hamiltonian is
obtained, for example, quantization of sys-
tems described by equation [1] follows
straightforwardly. Also, the Hamilton-
Jacobi approach may help to solve the equa-
tions of motion of a system via a convenient,
if possible, variable separation.

The effective potential [13] is construc-
ted such that it contains all the dynamical
information of the system. In general, it may
have explicit dependence on time, on the
field itself and on the derivatives of the field;
certainly, the nabla-star operator identifies
the contribution of each functional depen-
dence by means of specific terms, as can be
seen in equation [11].

As reported (11,12) in other approaches
the effective potential is useful only for sta-
tionary or static regimes; the approach pre-
sented here can be used to study those
cases, the complete temporal evolution of [1]
and also the equilibria and stability states.
The present potential formulation is based
on a classical mechanics approach, there is
no need of auxiliary or ghost fields. Nor
Fokker-Planck equations neither special as-
sumptions about the additive noise function
are invoked in the construction.
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