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Abstract

The purpose of this work is to investigate on the phenomenon of front propagation into
magnetic media. Here, we study the case when the magnetization, M, is driven by a dc applied
magnetic field, H,, from the demagnetized to the magnetized state. A theoretical model is pre-
sented for solving the Landau-Lifshitz-Gilbert equation (LLGE) in the framework of an effective
field that includes first order cubic, H,, inplane uniaxial, H,, and shape anisotropy fields, H,. It
is show that the dynamics of the magnetization is govern by a diffusion-reaction equation, and
in the important case of uniformly translating profiles, this equation gives a family of solutions
that describe harmonic oscillating (HO), damped oscillating (DO), exponential fronts (EF), am-
plified oscillating (AO), and dual front profiles (DF). Also of interest is the existence of a critical
front speed, v* that separates the damped oscillations from the exponential fronts. In the case
of purely uniaxial systems, this velocity is connected with the existence of a nonlinear marginal
stability point for front propagation, and shows a strong dependence on the relative value of the
anisotropy constants of the medium. When the crystalline anisotropy overcomes the uniaxial
field the marginal stability point is not well defined since v*is purely imaginary and only expo-
nential fronts are linearly stable.
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Propagacion de ondas en medios magnéticos

Resumen

El propésito de este trabajo es estudiar el fenémeno de propagacion de frentes de onda en
medios magnéticos. Estudiamos el caso cuando la magnetizacion, M, evoluciona por la accion
de un campo magnético dc, H,, desde el estado desmagnetizado al estado magnetizado. Presen-
tamos un modelo tedrico para resolver la ecuaciéon de Landau-Lifshitz-Gilbert (LLG) conside-
rando un campo efectivo que incluye las anisotropias cubica de primer orden, H,, uniaxial en el
plano, H,, y de forma o desmagnetizante, H,. Se muestra que la dinamica de la magnetizacion
esta gobernada por una ecuacion de reaccion-difusion y, en el importante caso perfiles unifor-
mes, se obtiene una familia de soluciones que describen oscilaciones armoénicas (HO), oscilacio-
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nes amortiguadas (DO), frentes exponenciales (FE), oscilaciones amplificadas (AO) y frentes
duales (DF). Es interesante la existencia de una velocidad de frente critica, v*, que separa las os-
cilaciones amortiguadas de los frentes exponenciales. En el caso de un sistema uniaxial puro,
esta velocidad esta relacionada con la existencia de un punto de estabilidad marginal no lineal,
con una fuerte dependencia en los valores relativos de las constantes de anisotropia del medio.
Cuando la anisotropia cristalina sobrepasa el campo uniaxial, el punto de estabilidad marginal
no esta bien definido, ya que v* es imaginario puro y sélo los frentes exponenciales son lineal-

mente estables.

Palabras clave: Ecuacion de Landau-Lifsshitz-Gilbert; medios magnéticos; ondas

magnéticas.

Introduction

One of the most exciting subjects on
condensed matter physics is that related to
wave propagation into magnetic materials,
and recently, the dynamics of the magneti-
zation process in magnetic systems has be-
come an updated topic. Intuitively, if a mag-
net is initially demagnetized, and when an
external field is applied, the demagnetized
state becomes unstable and the material is
magnetized up to saturation. During the
magnetization rotation, and due to domain
wall motion, magnetic pulses, fronts and
other profiles may propagate through a
magnetic medium with a well defined dyna-
mics, which leads to various nonlinear phe-
nomena. These fronts are of many different
types: solitons, shocks, dissipative fronts,
uniformly translating profiles, and appear
as solutions of a kind of nonlinear partial
differential equations called in the literature
as diffusion-reaction equations (DRE) (1).
Numerical studies involving diffusion-reac-
tion equations indicate that the velocity of
the profile of these solutions is selected via
some common dynamical mechanism, and
that this selection mechanism is always re-
lated to marginal stability (2).

On the other hand, a magnetic material
exhibit a nonlinear relation between the
magnetization and the applied magnetic
field that affect not only the switching pro-
cess, but also distorts magnetic pulses that
propagate through the medium. Since mag-
netic materials are commonly used for te-

chnical and practical applications, it is clear
that the study of nonlinearities in these sys-
tems is of great importance.

In this paper front propagation in a
magnetic system with uniaxial and cubic
crystal anisotropies is considered. Based on
the Landau-Lifshitz-Gilbert equation (LLGE)
(3), we develop a model for a magnetic sys-
tem in the presence of an external magnetic
field, and show that in this framework the
dynamics of the magnetization is governed
by a nonlinear diffusion-reaction equation.
The model is then solved numerically and
the results interpreted in terms of concepts
related with fronts propagating into an uns-
table state. It is also found that the velocity of
the magnetic front is determined by a selec-
tion mechanism mainly due to the magnetic
anisotropies of the medium and the applied
field. Stability maps for uniformly transla-
ting profiles through magnetic media are
proposed.

The paper is organized as follows. In
section 2 we derive the nonlinear partial
differential equation that govern the dyna-
mic of the magnetization in the magnetic
material with uniaxial and cubic anisotro-
pies. In section 3 physical picture of front
propagation is discussed, and we linearize
the diffusion-reaction equation resulting
from the analysis presented in section 2, and
study the asymptotic solutions. Section 4 is
devoted to the numerical analysis of the or-
dinary differential equation obtained in Sec-
tion 2, and discuss the main results. In sec-
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tion 5 we summarize the main results from
this study.

Theoretical approach

We start by assuming that the dyna-
mics of the magnetization in the specimen is
governed by the Landau-Lifschitz-Gilbert
equation (LLGE) (3),

SN = =M F =AM X M X H [
where y and A, are the gyromagnetic ratio
and the Gilbert damping parameter, respec-
tively, M is the magnetization, H= -V, E, is
the effective magnetic field, and E is the
magnetic free energy. The first term on the
right-hand side represents the precessional
torque exerted by the magnetic field and the
second term is a damping torque due to vis-
cous forces acting on the magnetization. For
the magnetic energy we used the Landau-
Ginsburg free energy expanded in powers of
the magnetization near a critical point, and
may be expressed as

E=—H, M+ ZWM?

" y %(M‘ZM-Z’) " %(VM)Z (=xy2  [2]

The first term in the right-hand side is
the Zeeman energy, the second term repre-
sents the contribution from the uniaxial and
demagnetizing anisotropies, the third term
is the first order cubic anisotropy energy,
and the forth term the exchange energy,
with K, D, K,, and J denoting the uniaxial
anisotropy, demagnetizing, crystalline, and
exchange constants, respectively. H, is an
external dc applied field. With the help of ex-
pression [2] and the definition of the effecti-
ve field, [1] transforms into the 3 x 3 system,

M, = _V(Msz -M.H, ) - A[My(MxHy - MuHX)
MM H, - MH)] (3a)

M, =—y(M,H, -M H,)- M, (M,H, - M,H,)
-M . (M.H,-M,H,)| [3b]

M, = -y(M.H, -M,H, )~ {M(M,H, - M.H,)
-M,(M,H, - M,H,)] [3c]

where the effective field components are gi-
ven by
2K J

H,=H,, —i(Kﬁ + K, —D)M, + LM - = VM,
M? m* M?

(i=x.y,2) [4]

For sake of simplicity, we will consider a
FM of length, L, large compared to it width, w
(w« L), and the thickness, t, sufficiently small
(t«w), soV -9/ dx. The plane of the FM is in
the (x, y) plane and an external dc magnetic
field, H,, is applied along the axis of the ma-
terial (x-axis). It is also considered that the
magnetization is completely inplane

(Mﬁ«Mi +M; = Mz), the value of the cubic
anisotropy is constant along all crystalline

axes, and both demagnetizing and uniaxial
fields are parallel to the x-axis.

With all these assumptions, [3a] to [3c]
are rewritten as

M = W(M.H, - M,H )M, (5]
M= -i(M,H, - M,H, )M, [5b]
M,=y(M,H, - M_H,) [5cl

with the effective field components

2K, . o J &
e T e M 16l

H,_ =H,, —%(Kl +K, -D)M, +

x

2K 9K, J @
Hy = —le My + e M; —WEM!} [6b]

In case of a damping sufficiently high
the torque part can be neglected, so A»y and
M, = 0. This reduces our problem to solving
[5a] together with the relation
M? = MZ(x,t)+ M} (x.,t) = const. Substitu-
tion of [6a], [6b] into [5a], lead to the nonli-
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near partial differential equation for the
magnetization

9 olx,t) (a )2
) = B +a——"| — Lt
ple ) aax2 plxt) al(pz(x,t) ax(p(x )

+e (X t) =’ (1) + ¢ p® (x, 1) + ¢ p(x, 1) — ¢, (7]

where (x,t)=M (xt)/M, H,=2K, /M,
H,=2D/M, H,=J/M, a=HM,
¢, = H,M, ¢ =(Hu_HD)M’

¢, =(H,-~H,)M and c, = 2H,M. Within
the mean-field approximation, the only im-
portant configurations near the critical
point are those of uniform magnetization
density, i.e. d¢ / dx = 0. This brings [7] to the
diffusion-reaction equation,

2

J
plx.t) =a Polx, 1)+ cp®(x, 1)

x>

—cyp°(x, 0+ cop’ (. ) + cip(x.t) =, [8]

where ¢, = ¢y + a.

Front propagation and linear
stability

A special class of solutions of [10] are
those called fronts. Fronts are extremely im-
portant in physics and are mathematically
described by

p(x,t) = p(& = x —vt) 9]

These solutions connect the unstable
state Limg(§)= 0 (demagnetized) to the stable
state Limgp(§)==<1 (magnetized), or

Limg(5) =0 [10]
Limp(8) = o, [11]

Substitution of conditions [10] and [11]
into [8] give the ordinary non-linear equa-
tion

ey = 2 C 55 _Cs 3
<p(§)—a<p(§)+a<p(§] asﬂ(&)

Co o [ _%

T (&) + aso(&) a [12]

The stable solutions of [14] are given by:

i_2 H +H, - H,
)

E

3H, + H, — H, H,
_( 1 U D) 3+71(p5=0 [13]

HE HE

This equation gives five roots for each
value of H, /H,. In the simple case of a pure
uniaxial magnet (H, = 0), [8] reduces to the
damped-forced Duffing’s equation, and has
been solved previously for an uniaxial mag-
net (4).

Apparently, the equation [12] has ac-
ceptable solutions for any value of v. Howe-
ver, according to other authors (5) there are
some natural conditions for which dynami-
cal velocity selection takes place, and then
the velocity of all acceptable fronts converge
asymptotically to one particular value. To
study the stability of fronts, let us perturb
the magnetized state (stable solution) with a
small term d¢, such that, ¢ - ¢, —Jd¢p as
& - o, where \6<p\<<<p s+ Introducing the solu-
tion ¢ = ¢ — d¢p into [15], and retaining only
terms up to first order in d¢p, we obtain the li-
near equation

d? vd
E6<p+a£é<p+sé<p—0 [14]
where

e = —5¢; + 3¢, —2¢, —c¢, - 2(HU -H, _HI_HO)
a H

[15]

E

with the corresponding characteristic
polynomial

12+§+e=0 [16]

The roots of this polynomial are given
by

v v (v
}.i =—%i (Z) —(za) [17]
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where we have defined v* = 2as!/2. This
yields to the following solutions

+ [18]

v No2omE
£ 2a
dp =e 2¢ (Ae

Be Za)

Since we require that dp - 0 as & - oo,
we get the asymptotic form dp « E~*¢, whit

v v (v )
or, equivalently,

v &
=K+ (20]
This expression gives the branch for
asymptotic behavior, and is plotted in Figu-
re 1 for e= 0.1 and 0.2. Every front profile in
this branch is purely exponential and pro-
pagate with velocity v =v" = 2ae'/?. This re-
gion is characterized by a continuum of
attractors for any value of v, and is governed
by a nonlinear-marginal-stability scenario,
being the speed v = v* a transition point of
marginal stability (3). In the case when v <v*,
K=1/2alv+ i(v¥-v°)"?, and the front oscilla-
tes with “natural frequency” v*/2a=¢"?, and
damping parameter v*/2a. These results
are summarized in Figura. 2, where the rela-
tion v* = 2ae'/? is plotted with respect to H,
/H,. This map differentiates the oscillating
fronts from the exponential front profiles.
Each point on this curve correspond to a mi-
nimum in [20] for each value of H, /H, and
(H/H,H)/H,>H,/H,. When H-H, -H, /H, <
H, /H,, the marginal stability transition is
not well defined since v* is imaginary and
the only stable states under perturbations
are purely exponential front profiles.

Numerical Analysis

In order to understand the problem of
wave propagation through magnetic me-
dia, we must go back to [14]. By means of a
Runge-Kutta-Fehlberg scheme (6) this
equation is solved numerically on a mag-

va |

=
=
e
n
-
=
I
n

2.0

Figure 1. Branch of asymptotic behavior for front
profiles as given by equation [20].

Exponential
Decay

Damped v>v)

Oscillations
v<v)

Figure 2. Dependence of v" with respect to the
applied magnetic field, Ho, for a
representative value of (H, Hj
H, / H,).

net of normalized lengthé /L with the boun-
dary conditions [12] and [13], for several
values of v, magnetic fields in the range O <
H,<H,and 0 < H, < H,-H, < H,. We ob-
tain a family of solutions that describe har-
monic oscillations (HO), damped oscilla-
tions (DO), exponential front profiles (EF),
amplified oscillations (AO), or dual front
profiles (DF), depending on the relative va-
lue of (H,-H,-H,) /H,, and on the wave spe-
ed, v. The main results obtained from these
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¢ (E/L)
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0.0 1.0 0.0 1.0 0.0 1.0

gL ¢/ gL
(a) Harmonic oscillations (b) Damped oscillations (c) Exponential fronts

(pS (pS
¢ (L) o @E/L)
0.0 1.0 0.0 1.0
gL gL

(d) Amplified oscillations

(¢) Dual fronts

Figure 3. Representative solutions of equation [18] on a magnetic material of normalized length &/L: (a)
harmonic oscillations, (b) damped oscillations, (c) exponential fronts, (d) amplified oscilla-

tions and (e) dual fronts.

calculations are summarized in Figure 3:
(a) harmonic oscillations, (b) damped osci-
llations, (c) exponentials fronts, (d) ampli-
fied oscillations, and (e) dual fronts. We
found a critical velocity, v=v,(H,), at which
only metastable harmonic oscillations are
possible. In uniaxial magnets (H,-H,> H))
no stable patterns exist for v < v,(H,). For
front speeds greater than v,(H,), M stabilize
around the state ¢, (= 1), through damped
oscillations up to the asymptotic value
v*(H,), in which the magnetized state inva-
des rapidly the demagnetized state and an
exponential front begins to propagate. The
dashed line in Figura3(a) correspond to the
value of ¢, around which the magnetiza-
tion converge asymptotically. When H,,-H,
< H, all fronts represented in Figure 3 can
propagate. The amplified oscillations are

seen only for v < v, and in a narrow range of
velocities. Usually related to parametric re-
sonance conditions, amplification of the
amplitude of a propagating pulse has been
found experimentally and verified theoreti-
cally in systems such as magnetized coa-
xial transmission lines (7), thin ferromag-
netic films (8), and microstrip antennas (9).
Profiles of the type illustrated in Figure 5(e)
are known as dual fronts (10, 11). In the
presence of an external magnetic field such
patterns develop under the special condi-
tions (K, > K). This phenomenon occurs
when the interface between an unstable
state and a stable state splits into a two-
fold interface developing two fronts propa-
gating with different speeds.
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H /H, H/H,
Figure 4. Stability diagrams for front propagation in a magnetic material, as obtained from solving

numerically equation [18].

The stability maps (v(H,)) for a magnetic
medium are summarized in Figura 4, for (a)
H,=0,(b)H,-H,>H,#0, (c)H,-H,<H,, and
(d) H, - H, = 0, as a function of the dc magne-
tic field. The closed squares in Figures 4(a)
and 4(b), indicate the velocities observed in
the stable solutions of [14]. The dashed cur-
ve represents the asymptotic value determi-
ned by the relation v*(H, ). The regions labe-
led DO and EF refer to damped oscillations
and exponential profiles respectively, and
are strongly dependent on the value of
(H,-H,-H,) /H,. There also exist a region in
which all states are unstable (US) and grows
as (H,-H,-H,) /H,increase. A small region of
unstability is also observed with fronts pro-
pagating with velocity v < v, (shadowed). The

region labeled as NA is physically inadmissi-
ble since ¢, > 1. For H, - H,<H,and H,,- H, =
0, the situation is quite different, as depicted
in Figures 4(c) and 4(d). Three features are
characteristic of these maps: (a) the transi-
tion velocities from DO states to EF states do
not correspond to a transition point of mar-
ginal stability, since when H, - H, - H, < H,
/H_the values of v*(H ) are purely imaginary,
(b) a small region of amplified oscillations
(AO) is observed for velocities below v, bet-
ween the DO and US regions, and (c) the re-
gion in which dual fronts are observed
appear inserted between two regions of ex-
ponential profiles. It is also observed that the
regions of AO and DF profiles grow as H, is
increase.
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Concluding remarks

In conclusion, we have shown that the
dynamics of the magnetization in a magne-
tic material with uniaxial and magnetocrys-
talline anisotropy is governed by a nonlinear
diffusion-reaction equation. In the case of
uniform translating profiles it is found that
the velocity of the profiles is determined by a
selection mechanism mainly due to the
magnetic anisotropies of the material. When
the initially demagnetized system is pertur-
bed by a dc applied field, profiles such as
harmonic oscillations, damped oscillations,
exponential fronts, amplified fronts and
dual fronts can propagate through the me-
dium, depending on the value of the applied
field and the internal anisotropy fields. This
model allowed us to propose stability dia-
grams for front propagation in a magnetic
medium.
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