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Abstract

We consider a family of singular maps as an example of a simple model of dynamical sys-
tems exhibiting the property of robust chaos on a well defined range of parameters. Critical
boundaries separating the region of robust chaos from the region where stable fixed points exist
are calculated on the parameter space of the system. It is shown that the transitions to robust
chaos in these systems occur either through the routes of type-I or type-III intermittency and
the critical boundaries for each type of transition have been determined on the phase diagram of
the system. The simplicity of these singular maps and the robustness of their chaotic dynamics
make them useful ingredients in the construction of models and in applications that require re-
liable operation under chaos.
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Mapas singulares cadticos

Resumen

Se considera una familia de mapas singulares caéticos como un ejemplo de un modelo
simple de sistemas dinamicos que poseen la propiedad de caos robusto en un rango bien defini-
do de sus parametros. Se calculan las fronteras criticas que separan la region donde ocurre
caos robusto de la regiéon donde existen puntos fijos estables en el espacio de parametros del
sistema. Se muestra que las transiciones al caos tienen lugar a través de las rutas de intermi-
tencia tipo I y de intermitencia tipo III, y se determinan las fronteras criticas para cada tipo de
transicion en el diagrama de fases del sistema. La simplicidad de estos mapas singulares y su
dinamica cadética robusta los convierten en ingredientes tutiles para la construccion de modelos
y en aplicaciones que requieran operacion confiable en un régimen caético.
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1. Introduction interferences (4), in cryptography (5), in sta-
bilizing plasma fusion (6), etc. In such appli-
cations it is necessary to obtain reliable op-
eration of chaotic systems.

Many practical uses of the phenome-
non of chaos have been proposed in recent
years, as for instance, in communications
(1, 2), in enhancing mixing in chemical pro- It is known that most chaotic attractors
cesses (3), in avoiding electromagnetic of smooth systems are embedded with a
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dense set of periodic windows for any range
of parameter values. Therefore in practical
systems functioning in chaotic mode, a
slight fluctuation of a parameter may drive
the system out of chaos. On the other hand,
it has been shown that some dynamical
systems can exhibit robust chaos (7-9). A
chaotic attractor is said to be robust if, for its
parameter values, there exist a neighbor-
hood in the parameter space with absence of
periodic windows and the chaotic attractor
is unique (7). Robustness is an important
property in applications that require reliable
operation under chaos in the sense that the
chaotic behavior cannot be destroyed by ar-
bitrarily small perturbations of the system
parameters. For example, robust chaos has
efficiently been used in communications
schemes (10).

In this article we study a family of sin-
gular maps as an example of a simple model
of dynamical systems that shows robust
chaos on a finite interval of their parameter
values. In Section 2 we introduce this family
of maps and investigate their dynamical
properties, both analytically and numeri-
cally. It is found that the transitions to ro-
bust chaos in these systems occur either
through the routes of type-I or type-III inter-
mittency (11). The region where robust
chaos takes place is characterized on the
space of parameters of the maps. Conclu-
sions are presented in Section 3.

2. Singular maps

As a simple model of a dynamical sys-
tem displaying robust chaos, we consider
the following family of singular maps

X, = f(x)=b=|x| 8

wheren € Z, z <1, and b is a real parameter.
The exponent z describes the order of the
singularity at the origin that separates two
piecewise smooth branches of the map
Equation [1]. These maps are unbounded,
thatis, x,, € (~, »). The Schwarzian deriva-

tive of the family of maps Equation [1] is al-
ways positive, i.e.,

>0, [2]

szfm _3(f”) _1=z

f; 2 f; - 2x2

for || < 1. Thus maps defined by Equa-
tion [1] do not belong to the standard uni-
versality classes of unimodal maps and do
not satisfy Singer’s theorem (12). As a con-
sequence, these singular maps do not ex-
hibit a sequence of period-doubling bifurca-
tions. Instead, the condition Sf > Oleads to
the occurrence of an inverse period-
doubling bifurcation, where a stable fixed
point on one branch of the singular map
losses its stability at some critical value of
the parameter b to yield robust chaos. It
should be noted that robust chaos has also
been discovered in smooth, continuous
one-dimensional maps (13).

Figure 1 shows the bifurcation dia-
grams of the iterates of map Equation [1] as a
function of the parameter b for two different
values of the singularity exponent z. Figure 1
reveals robust chaos, i.e., the absence of
windows of stable periodic orbits and coex-
isting attractors, on a well defined interval of
the parameter b for each value of z.

The transition to chaos at the bounda-
ries of the robust chaotic interval occurs by
intermittency. Intermittent chaos is charac-
terized by the display of long sequences of
periodiclike behaviour, called the laminar
phases, interrupted by comparatively short
chaotic bursts. The phenomenon has been
extensively studied since the original work of
Pomeau and Manneville (11) classifying
type-1, -1I, and -III instabilities when the Flo-
quet multipliers of the local Poincaré map
associated to the system crosses the unit cir-
cle. Type-I intermittency occurs by a tangent
bifurcation when the Floquet’s multiplier for
the Poincaré map crosses the circle of uni-
tary norm in the complex plane through +1;
type-II intermittency is due to a Hopf's bifur-
cation which appears as two complex eigen-
values of the Floquet’s matrix cross the uni-
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Figure 1. Bifurcation diagrams of the iterates
of the map Equation [1] as a function
of the parameter b for two values of
the order of the singularity z, showing
robust chaos. Type-I or type-IIl inter-
mittencies appear at the boundaries
of the robust chaos intervals. (a) z =
-0.5; (b)z=0.5.

tary circle off the real axis; and type-IIl inter-
mittency is associated to an inverse period
doubling bifurcation whose Floquet’s multi-
plier is -1.

Two stable fixed points satisfying
f(x")= x"and ‘f’(x*)‘<1 exist for each

value of z x” <0Oand x, >0, both are seen in
Figure (1). For z€ (- 1,0), the fixed point x~
becomes unstable at the parameter value

z 1
b_(z) = lzfi-z —lzli-z, (3]
through an inverse period doubling bifurca-
tion that gives rise to chaos via type-IIl inter-
mittency, while the fixed point x| originates
from a tangent bifurcation at the value

z 1
b, (z) =lzi-z + [z[1-z, [4]

and the transition to chaos at this value of b
takes place through type-I intermittency. On
the other hand, for Z €(0,1) the behavior of
the fixed points is interchanged: x" experi-
ences a tangent bifurcation at the parameter
value b_(z) and a type-I intermittent transi-
tion to chaos occurs; while the fixed point x|
undergoes an inverse period-doubling bifur-
cation at the value b, (z), setting the scenario
for a type-IIl intermittent transition to
chaos. There exist several unstable period-m
orbits {)?1,)?2,...,)?,“} satisfying
f™Mx)=x, and
d _ ™ _
dxf‘””(xj) = H‘f’(xj)‘ < lin the chaotic in-
j=1
terval b e [b .(2),b_ (z)]. Figure 2 shows
some unstable periodic orbits of the singular

map with z = -0.25 as a function of the pa-
rameter b.

Figure 3 shows the critical boundaries
b_(z) and b, (z) for the transition to chaos.
These boundaries separate the region on the
parameter plane (b, z) where robust chaos ta-
kes place from the region where stable fixed
points of the maps Equation [1] exist. The
transition to chaos via type-I intermittency
takes place at the parameter boundaries
b,(z)= b, (z) for z€(-10), and b,(z) for
z €(0,1). On the other hand, the transition to
chaos via type-IIl intermittency occurs at the
critical parameter values b, (z) = b_(z) for
z €(=10), and b, (z) = b, (z) for z € (0,1). The
boundaries b,(z) and b, (z) on the space of
parameters (b, z) are indicated in Figure 3.

Scientific Journal of the Experimental Faculty of Sciences,
at the Universidad del Zulia Volume 15 N° 4, October-December 2007



M.G. Cosenza et al. [ Ciencia Vol. 15, N® 4 (2007) 438 - 443 441
1 T
by
b Robust
0.5 =\ chaos Stable .
fixed points
z 0 -
Stable
| fixed points |
by
05 L Robust B
chaos
Lb
1 | 1 | !
0 0.5 1 1.5 2
b

Figure 2. Some unstable periodic orbits of the
singular map with z=-0.25, indicated
by dotted lines, as a function of b. The
stable fixed points x_ and x, are
plotted with solid lines. At the
parameter value b_ = 09896, the fixed
point x_ becomes unstable through
an inverse period-doubling
bifurcation, giving raise to the
unstable fixed point x_. At the value
b, =16494, a tangent bifurcation
takes place and the pair of points x,
(stable) and x, (unstable) are born.
The period-2 unstable orbitx;, andX,,
satisfying f(x;)= f(x,) are shown.

The width of the interval for robust chaos on
the parameter b for a given |z <1is

Ab(z) = b, (z) —b_(z) = 2z[i-- (5]

Figure 4 shows the Lyapunov exponent
as A function of the parameter b for the fa-
mily of maps Equation [1], for two values of
z, calculated as

1
A =?§10g

i)l (6]

Figure 3. Critical boundaries b_(z) andb, (z) of
the robust chaos region for the
singular maps on the space of
parameters (b,z). The thick, dark line
indicates the boundary b, (z) for the

transition to chaos via type-lII

intermittency. The thin, light line
corresponds to the boundary b, (z) for

the onset of type-I intermittency.

with T =5%10* iterates after discarding
5000 transients for each parameter value.
The boundaries b_(z) and b, (z) correspond
to the values A = 0. The Lyapunov exponent
is positive on the robust chaos interval Ab(z).
The transition to chaos through type-I inter-
mittency is smooth, as seen in Figure 4. In
contrast, the transition to chaos via type III
intermittency is manifested by a discontinu-
ity of the derivative of the Lyapunov expo-
nent at the parameter values corresponding
to the critical boundary b, (z). This disconti-
nuity is due to the sudden loss of stability of
the fixed point associated to the inverse pe-
riod doubling bifurcation that occurs at the
boundary b, (z). The Lyapunov exponent
can be regarded as an order parameter that
characterizes the transition to chaos via
type-I or type-III intermittency. This transi-
tion can be very abrupt in the case of type-III
intermittency, as seen in Figure 4.
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Figure 4. Lyapunov exponent 4 as a function of
the parameter b for two values of z,
calculated over 5x10* iterations after
neglecting 5x10° iterates representing
transient behavior for each value of b.
(a)z=-0.5; (b) z=0.5.

3. Conclusions

We have introduced a family of singular
maps as an example of a simple model of dy-
namical systems exhibiting robust chaos on
a well defined range of parameters. The be-

havior of these maps has been characterized
as a phase diagram in the space of their pa-
rameters, showing a region where robust
chaos takes place and regions where stable
fixed points occur. We have shown that the
transitions to robust chaos in these systems
occur either through the routes of type-I or
type-IIl intermittency and have calculated
the critical boundaries for each type of tran-
sition on the phase diagram of the systems.
The simplicity of these singular maps and
the robustness of their chaotic dynamics
make them useful ingredients in the con-
struction of models and in applications that
require the property of chaos.
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