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Abstract

The most general relativistic boundary conditions (BCs) for a “free” Dirac particle in a one-
dimensional box are discussed. It is verified that in the Weyl representation there is only one
family of BCs, labelled with four parameters. This family splits into three subfamilies in the Di-
rac representation. The energy eigenvalues as well as the corresponding non-relativistic limits
of all these results are obtained.
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Condiciones de fronteras mas generales
para una particula de Dirac en una caja

Resumen

Se discuten las condiciones de frontera (BC) relativisticas mas generales para una parti-
cula “libre” de Dirac en una caja unidimensional. Se verifica que en la representacién de Weyl
existe solo una familia de BC, representadas por cuatro parametros. Esta familia se divide en
tres subfamilias en la representacion de Dirac. Se obtienen los autovalores de la energia asi
como los correspondientes limites no-relativisticos.

Palabras clave: Condiciones de frontera; mecanica cuantica; particula de Dirac;
representacion de Weyl.

1. Introduction parameters family of BCs for which the
Schrédinger “free” hamiltonian is self-
adjoint. These authors claim that this family
of BCs is the most general one for a particle
in a box. However, by using von Neumann's
theory of self-adjoint extensions of symmet-
ric operators, as is exposed for example in
(2), it was shown (3) that maintaining the
column vectors of the BC that relate linearly

A “free” particle in a one-dimensional
box is certainly the canonical example of ele-
mentary non-relativistic quantum mechan-
ics. Recently, at least in the physical litera-
ture (1), the boundary conditions (BCs) that
forces the energy eigenfunctions to vanish at
the walls of the box were generalized to a 4-
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the wave function and its derivatives at the
wall of the box, there are three inequivalent
families of self-adjoint extensions one of
which is that of reference (1). Moreover,
these families represent the most general
manifold of self-adjoint extensions for a
“free” non-relativistic particle in a box (4).

In this note, we examine from the rela-
tivistic point of view this problem by using
the Dirac equation. In the Weyl representa-
tion (WR), the most general BCs may be writ-
ten using only one family which splits into
three families in the Dirac representation
(DR), which is the appropiate representation
in order to take the non-relativistic limit.

On the other hand, the vanishing of the
whole spinor at the walls yields by itself to
incompatibility, that is to say, the problem
has only the trivial solution (6). The same re-
sult has been obtained in the relativistic
scattering on an impenetrable cylindrical
solenoid of a finite radius (5, 6).

A particular solution may be obtained
by considering the Dirac equation with a
Lorentz scalar potential (7); here the rest
mass can be thought of as an x-dependent
mass. This permits us to solve the infinite
square well problem as ifit is were a particle
with a changing mass that becomes infinite
out of the box, so avoiding the Klein para-
dox (8).

Different BCs lead to different physical
consequences. For relativistic scattering
problems (6, 9), it has been proposed that
the vanishing of only the large component of
the Dirac spinor is a physically acceptable
BC. It can be easily seen that, for the “free”
particle in a box, in the non-relativistic limit
this BC yields the well known Dirichlet BC.
Furthermore, such BC is only one of the infi-
nite self-adjoint extensions of the “free” Di-
rac hamiltonian. This result, as well as the
eigenvalues and eigenfunctions for the fam-
ily of self-adjoint extensions of the “free” Di-
rac hamiltonian in the WR, was obtained in
(10).

The problem of a Dirac fermion in a
one-dimensional box interacting with a sca-
lar solitonic potential, with periodic (11), as
well as with more general BCs (12), was con-
sidered earlier in order to elucidate the phe-
nomenon of the fractional fermion number.
For the case of the Dirac “free” massless op-
erator, alsoin 1 + 1 dimensions, eigenvalues
and eigenfunctions have been obtained for a
family of self-adjoint extensions in (13). The
case with a non-zero vector potential was ex-
amined in (4).

In section 2, we write in the WR the
self-adjoint extensions of the hamiltonian of
a “free” Dirac particle in a one-dimensional
box. This family leads to three non-
equivalent families of self-adjoint exten-
sions for this operator in the standard or
DR. In the last part of section 2, for each
family of self-adjoint extensions, we give the
energy, eigenvalues as well as several exam-
ples of BCs which may be of physical inter-
est.

In section 3, the non-relativistic limit of
each family of self-adjoint extensions in the
DR is obtained, as well as their non-
relativistic energy eigenvalues. We write the
most general non-relativistic BCs obtained
from the non-relativistic limit of the single
relativistic family in the WR.

2. Self-Adjoint extensions

The Dirac eigenvalue equation for a
relativistic “free” particle inside a one-
dimensional box, with fixed walls at x=0
and x = L, may be written as:

d ,
(Hy)(x) = (*ihca gt C“B)W(X) = Ey(x) [1]

where v denotes a two-components spinor
depending upon x € Q=[0,L]. In the DR:
a=0c, and B=oc,. In the WR: a=0, and
B = 0-x °

The spinors y(x) and (Hy)(x) belong to a
dense proper subset of the Hilbert space
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H=L* Q) ® L*(), with a scalar product de-
noted by <, >. The domains of H and its ad-
joint H* verify Dom(H) ¢ Dom(H*), but H
must be self-adjoint, so, we look for self-
adjoint extensions of the symmetric opera-
tor H.

d(x)
In the DR, y,(x) = 09 in the WR we

v, (x)
write: v, (x) = . In order to change rep-

v, (x)
resentation, we use the transformation:

1 1
¢ :ﬁ(\"‘ +y,) and x ZE(‘"‘ +,).

2.1. Self-adjoint extensions in the WR

In this representation there exists a
four-parameters family of self-adjoint exten-
sions of the formal hamiltonian operator
H, 6 =(H,)

1,7

od
=—ihco, ;- +mc o, (2]

(H,) e

with domain given by (10, 12-14)

%
Dom(H,,) —{\yw = [Wl] ly, € H, a.c. in Q,

2

(H,v,) € H, y,_, fulfils:

[\VI(L)J _ [%(L)j, U :U*l 5]
v,0) "y, (0) J
where hereafter a.c. means absolutely con-
tinuous functions and the symbol “+” de-
notes the adjoint of a vector or a matrix. The
unitary matrix U may be written as:

A% u
o, Y

s w
where: v=e"e" cosh, u=e"e" siné,
s=e*e"sinfand w=-e"e " cosH, with0 <6
<m, 0L 1,y <21,

Let us also point out that the same
four-parameters family of self-adjoint exten-

sions is valid when a bounded potential is
present inside the box.

It can be shown that for every spinor
vy, € Dom(H_ ), the current density
Jj)=cv!o,y, satisfies at the walls of the
box: j(0) = j(L), and for some of the exten-
sions (0= 0) it is verified that: j(O)= j(} =0,
which leads to the relativistic impenetrabil-
ity condition at the walls of the box.

In the WR the general solution of [1]
can be written as

( 1 w E —hck
Y, =G| EZhK e e, Tm? e 5]
\ mc? ) 1

/Ez _(mcz)z
hc

trary complex constants. The trascendental
equation for the energy eigenvalues is

where k = and ¢, ¢, are arbi-

'E — hek\?
cos(uka)f( > ) cos(p+ kL) -
mc
[ (E-hck)?*] ,
Ll_ = Jcosysm9+
mc
E —nck
2( = jsinrcosé)sin[kL):O [6]
mc”

2.2, Self-adjoint extensions in the DR

In order to obtain the non-relativistic
families of BCs, let us first change to the DR.
From H_, with domain given in [3], and us-
ing the transformation from the WR to DR
we have

1+v u (= 1-v  —u (o)
( s 1+wj(x(0)j - ( s l—wj \¢(0)j 71
Then, three families of self-adjoint ex-

tensions of H,are obtained. Firstly

d 2
=—{hco, ——+mc c, [8]

HY =(HY),,,, =-ihes,

whose domain can be written as
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0
Dom(HY)) = {\yn = (X] ly, € H, a.c. in Q,

(HD v,) € H, vy, fulfils:

S0\ (6 N
[x(O)):A*(‘b(O)j’ A=H4) 19l

where
A, =i(sinp-sintcos6)

[cosp—cos*c cosH - sind ]

-e " sind COS [ +cos T oS0

[10]
with the restriction: sin u-sintcos6 # 0.

Likewise

HY = (H)

.1,

=—ihco , e +mc’o,
acting on the domain

¢
Dom[H[‘)z)] = {\yo = (/{ ly, € H, a.c. in Q,

(H?vy,) € H, v, fulfils:

[ML))*A (*X(L]j -
60 A2\ g0 ) A=)

(12]
where
A, =ilsinpu+sintcosf)™’
COS L+ 08T Ccosh e sin®
( e sin® COS L —COST cosej

(13]

with the restriction: sinp +sintcosf # 0.

Finally, let us consider the cases where the
above two restrictions are changed to

sin u—sint cos®=0 and sin p+sint cosd=0. This

corresponds to the vanishing of the determi-
nants of the matrices in [7]. It can be shown that
all BCs in this new family are obtained from [7],
and are included in some of the following cases:
)pu=0,t=0,i) u=0,t=m, iii) u=n,t=0, and iv)

s
p=n,t=n; where 0<0<n, but 8=, and

2
0<y <2r. If9=% then p=0, = and 0 <7 < 2r. We

write this family as

Hp =(HY"),, ., =-thco, ——+mc’s, [14]

*dx

with the domain given by

® J o .
Dom(H}') = l\yn =l ly, € H, a.c. in Q,

(H®y,) € H, y,, fulfils equation
[7] with the following cases:
)p=01=0,i) u=01t=m,
iif) u=m,7t =0, and

n
ivjp=mnt=m; Wh1t6¢§ IfO—E
then pn=0, tand 0<t <2} [15]

In the DR we have three energy eigen-
values equations, one for each hamiltonian
operator HY, H?, H®'. The general solution
may be written as

vE+me® | . VE-mc e
e [m} e (ﬂ/”‘wtmc W

(16]

withd,, d, arbitrary complex constants. The
eigenvalues equations are

[E+)' me*> E+E1)"'mc?
+ D ¢sin(kL)+
hc hc J
F}.kcos(kL)—ij:O [17]
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sin” 8—cos® p+cos® tcos’ q
(sinp+(1) sintcos®)?
2cosp

where D =

i 7 sinu+ (1)’ sint cosd

G 2sin6cosy
17 sinp+(1)? sintcos®

with j = 1,2.

The case j = 1corresponds to the eigen-
values equation of HY and j=2to H?. For
the third family, the energy eigenvalues of
HY are obtained from

cos(kL) =+£sin0cosy [18]

where the upper sign corresponds to the
cases i) and ii) and the lower sign to the
cases iii) and iv), for all 6.

2.3. Some typical BCs

BCs are frequently referred to spinors
in the DR because of its non-relativistic
limit. So, we give several examples of them
involving y,, that also belong to Dom(H )

2 0=0 p:r:% 0<y<2n
BC: ¢(0) =¢(L) = 0 € Dom(H?)
3
Bl 0=0 h=5 t:*?iz 0<y <2n

BC: (0) = (L) = 0 € Dom(HY)

BC: ¢(0) =y(L) = 0 € Dom(HY)

d 9-0 u-=o0 ‘r=% 0<y <2n
BC: y(L) = ip(L)and x(0) = ip (0)
e Dom(HY) n Dom(H'?)

e)

T
925 [L=¥ =01

BC: y, (0) =y, (L) € Dom(H)

The BCs a), b), ¢), and d), can be used if
we consider the walls of the box as impene-
trable barriers, that is, for the current den-
sity: j(x) = cy) o, v, to be zero at the walls of
the box. The vanishing of the normal compo-
nent (to any surface) of the relativistic cur-

rent density, has been used in the MIT bag
model of quarks confinement, see, e.g. [15].
In 1 + 1 dimensions this BC is: H-{)Bay =y,
where the minus sign corresponds to x = 0
and the plus sign to x= L. This BC in the DR
is precisely d).

3. Non-relativistic limits (NRLs)

As is well known, in the DR the Dirac
equation [1] for stationary states is equiva-
lent to the system.

d 2
Ai}‘zca(’p =(E+mc”)y

i i ? 19
~zcdxx:(E+mc )6 [19]

Assuming that: ¢ (x, J=¢(x—0),
x(x, @) =—(x,— and E(d = E(-9), the functions
d(x— and y(x— satisfy eqns. [19] with
¢ — — consequently we may write the fol-
lowing expansions in ¢ for ¢(x, d and y(x, d
(16)

1 1
¢ =0z +;?¢1+§¢2+---

1 1 1

e L L 20
X CX:‘\.R +C3 X1 +Co Aot [20]

and for the energy
X 1 1
E:mc“+ENR+—,;E1+C—4E,,+... [21]
" 2

Substituting relations [20] and [21] in
[19] and comparing the terms of lower order,
the following system is obtained

. d 2m

lad’r\m + TXNR =0

L. FY 22]
dXXNR n PR T

Eliminating y,;, we obtain the eigen-
value Schrodinger equation
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h 2 d 2
(Hygd ng) (x) = % EXE b g () = Eyi by (6)[23]

Here, ¢ ,, belongs to the Hilbert space
H,, = L*{Q) with scalar product denoted by
<,>.

In the NRL, the connection between the
components ¢ and y of the Dirac spinor y,,,

and the Schrdédinger eigenfunction ¢ ;. is
obtained by keeping only the first term of the
expansions [20], and using the first equa-
tion of [22], that is

¢’ = ¢NR

d
x> —Kia(b R [24]

here: A = ——
where: A e

Let us now consider the operator HY.
In the NRL, the matricial BC included in its

. . (—7»(1) NR [L)j . (¢NR[L)j
domain becomes: AL (0) =1iA 61 (0)

where the primes, hereafter, point out differ-
entiation with respect to x. The matrix 4 is
anti-hermitian, then iA, = M, is hermitian.

The first four-parameters family of
self-adjoint extensions of the non-
relativistic “free” hamiltonian operator con-
sists of the operators

Hll] E(H[” h” d”

NR NRJ g vy :_% dx? [25]

with domain

Dom(H%) = {6 yr | O ng € Hyg» & and e
a.c. in Q, (Hio xz) € Hygs
¢z fulfils:

(‘ND NR (L)) 5 (¢ NR (L)]
A g (0) g (0))

M, =(M,)"} (26]

Analogously, the NRL of the families:
HZ and HY, lead respectively the operators
H{? and HY), with their domains

HlZl

NR

2 2
RN

NR /g1, _% dx2 [27]

Dom(Hl[vi?)) = {¢NR ldnr € Hyg, dyr and ¢y
a.c. in Q, (HZ6¢ z) € Hyz»

b e fulfils:

(‘b NR (L)) M [}\.d) NR (L)]

0nr(0) T2\ MR (0) )

Mz :(Mz)f} (28]

where M, =-iA,, and finally

(3) 3) h2 dz
Hyg = (Hyg oy = ’% ?d.lxiz [29]
Dom(Hr(\?z)z) = {¢NR l dar € HNR' ¢NR and ¢;VR
a.c. in Q, (Ho b vz) € Hygs

o fulfils: equation [7] with
relations [24] for the cases
given in [15]} (30]

The energy eigenvalues equations for
HY and HY, obtained from the NRL of [17]
are respectively given by

{(Mye)? + D, } sin(kcye L) + Fhkyy, cOS(kyy L)
_Gl}"k:\'R =0 [31]

{0kyg)? + D, + 1} sinlky, L) + Fyhkyg coslicy, L)
G \kye =0 (32]

with hk,, =.2mE,, . Likewise, the energy ei-
genvalues of HY are

cos(k,;L) =tsinbcosy [33]

for the cases given in [18]. The transcenden-
tal equation for the eigenvalues of HY is a
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function f(k,;) =0, similar to that obtained
by da Luz and Cheng (1).

The BC given in the Dom(HY) are simi-
lar to those kmown in the literature (1). In or-
der to have the most general BC for a non-
relativistic “free” particle inside a box, we
have to consider all these three families with
domains given by: Dom(HY), Dom(H!?') and
Dom(HY) (3). However, it is possible to have
only one matricial condition that includes
all possible BC for which the self-
adjointness of H,, is maintained. This con-
dition is precisely the NRL of the matricial
BC included in Dom(H ).

In fact, this family of four-parameters

hamiltonians is

’.I‘Z d2
— = [34]

Hye = (Hyeduser =~ 5m g?

with domain

f '
Dom(Hy) =10 nr | Onr € Hyg, O ar and ¢ p
a.c. in Q, (Hy,¢ yz) € Hugs

¢,z fulfils:
(q) NR (L) s qu) ij (L)j _
¢ NR (O) + )\":d) ;VR (O) B
e (D) + A (L)] o
[m ©-rior ) U U
(35]

with U given by [4].

All possible BC for which H,, is self-
adjoint, are included in Dom(H,;). Itis worth
to note that, as opposed to the results given
in r eferences (1), all these BCs are obtained
without making infinite the elements of U.
The NRLs of the BCs given in section 2.3 are:

a) “Dirichlet condition”
012 (0) = 4 (L) = O € Dom(H?

b) “Neumann condition”
O (0 =0z (L) = 0 € Dom(Hyy)

¢) “Mixed condition”
Oz (0) =04z (L) = 0 € Dom(H})

d} “NRL in the MIT bag model”
ML) =0y (L) and Ay, (0) =6 (0)
e Dom(H},) n Dom(H

e) “Periodic condition”
b =0,z L) and ¢p0) =0\ (L)
€ Dom(H}))

Obviously, these BC represent differ-
ent physical situations, in fact, a), b), c), d)
and e) correspond to different definitions of
barrier impenetrability, with them, j,; van-
ishes at the walls of the box.

4. Conclusions

The most general BCs to be satisfied by
the Dirac spinor of a relativistic “free” parti-
cle in a one-dimensional box in the WR can
be given in terms of only one family of self-
adjoint extensions of four parameters of the
“free” Dirac hamiltonian. In order to obtain
the NRLs, one must change to the DR. How-
ever, this procedure leads to three families
of self-adjoint extensions for the hamilto-
nian; that is to say, there are three types of
BCs for which the “free” hamiltonian of the
DR is self-adjoint. Taking the non-
relativistic limit of each one of these fami-
lies, we have obtained three families of self-
adjoint extensions for the non-relativistic
“free” hamiltonian. It is worth stressing that
only the three families together provide all
possible BCs for a non-relativistic “free” par-
ticle in a one-dimensional box, and that the
matrix parameters connecting the spinor
components at the walls of the box take only
finite values. The corresponding eigenval-
ues equations depending on four-
parameters were also obtained, as well as
their non-relativistic limits. Since in the WR
it was possible to write down all self-adjoint
extensions in a single family, we have writ-
ten the three previously found non-
relativistic families in terms of only one fam-

ily.
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