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Abstract

The sffective viscosity of a gas in the transition regime confined to a cylindrical geometry
is obtained using the path integral method. In the transition regime a pattern of rapid variation
of the effective viscosity with the density in equally spaced narrow regions of pressure is found.
Those reglons are quite unaitered when boundary values ar € either constant, or variable For
the last case. linear. escillatory, and random dependences with density have been consider ed.
A discussion is given relating these results to those previously obtained for a planar geometry
of twa parallel infinite plates.
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Viscosidad efectiva de un gas en régimen de transicién
confinado en una geometria cilindrica

Resumen

La viscosidad efectiva de un gas en régimen de transcion confinado en una geometria
cilindricaes obtenida haciendouso del métode de la integral decamino. Regionesde rapida
variacién de |la viscosidad efectiva aparecen en el régimen de transicion equiespaciadas en
presiéon. Dichas regiones corresponden a pequefios intervalos en presion y varian poco COn
modificaciones de Ias condiciones de contorno. El efecto sobre la viscosidad efectiva de
variacioneslineales, 0SCilantesy aleatorias de lascondicionesde contornocon la presién ha
sido exarminado. Se discutefinalmented presente modelo compar andolacon uno previamente
desarrollada parael caso de unageometria planadedos planasparaldosinfinitos.

Palabras Cl aves. Gas; régimen de transicidn; viscosidad.

1 Introduction spectively. As is well known, the viscosity of
gases in the continuous regime (K << 1} is
independent of Kn (1) provided that the
density is not too high(2 3). In that regime

The transition regime of gases is that
range in pressure where the Knudsen num-

the mean free path and a characteristic gas, while in the transition (K, ~ 1) and
macroscopic dimension of the system, re- Knudsen {K, >> 1) regimes the viscosity
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Transition regime viscosity of a gas

depends on the flow geometry. It is for this
reason that in the last two cases the concept
of effective viscosity defined as the ratio of
the actual stress to the continuous regime
stress is used (4,5).

First order gradient expansions of the
stress do not explain flows in the transition
regime (3,6-8) since higher order equations
in the Chapman-Enskog expansion appear
to be necessary (2.3). Yet, the boundary
conditions for these high order equations
are unknown, although several approxi-
mate treatments of this problem have been
developed (2,3,8,9). On the other hand, al-
though boundary conditions may be ex-
pected to depend on the Knudsen number
K,,. there are reasons to believe that this
dependence may be weak in the transition
and Knudsen regimes (see below). Moreover,
we show here that the expression obtained
for the effective viscosity. assuming bound-
ary values independent of K. presents a
period of oscillation which is quite insensi-
tive to different types of variation of the
boundary values with K,. This allows a
simplification of the study of the transition
regime effective viscosity of a gas in a cylin-
drical torsion pendulum viscometer.

Following a simple path integral
method previously described (4). one ob-
tains a Burnett-type expression (8.9) for the
stress tensor component

v v
—* oy (1]
dp

Ps=-
pé n op
where higher order terms A, (d"v, /dp"). with
n = 57,..., have been neglected, p and ¢
being the radial and angular cylindrical
coordinates, v,(p) the fluid velocity, (Fig-
ure 1) and
of KT
Nn=nKt,y=3n rmi[ﬁ] . 2]

where n is the number of molecules per unit
volume and 1 is the average-time between

collisions. In the above equation 7 is the
usual coefficient of viscosity, and y the coef-
ficient of the first corrective term appearing
when the mean free path is no longer ne-
glected in front of a characteristic macros-
copic dimension of the system (4, 10). As can
be seen, the boundary conditions for Equa-
tion [1] are naturally the values of v, and

dv,/dp on the fixed and moving surfaces of

our cylindrical viscometer. Let us denote
these boundary values as:

V) = (P = Ry) L vy = v,(p = Ry) [3]
and
v dv
i 1 e ] =
By = ap =R, 8y = p |p=.m‘_. - [4]

where p = R, and p = Ry correspond to the
fixed and the moving surfaces of the visco-
meter, respectively. To get the friction on the
torsion pendulum, Equation [I] must be
solved twice, first for the inner fixed surface
and the interior face on the moving surface.
and secondly, for the exterior face of the
moving surface and the exterior fixed sur-
face: being the total friction equal to the sum
of these two contributions.

In Sec. Il we will consider the problem
of the local equilibrium function for a gas
that rotates with a given angular velocity. In
Sec. III the viscosity of a dilute gas in a
centrifuge field of force is calculated by the
path integral method up to third order in the
average-time between collisions 1. A pattern
of rapid variation of the effective viscosity
within equally spaced narrow regions of K|
is obtained, in qualitative agreement with
the experimental results already reported
(5. 10, 11). Finally, in Sec. IV some conclud-
ing remarks are presented.

II. Local equilibrium function for
a gas that rotates with a given
angular velocity

Let us consider a dilute gas, enclosed
in a cylindrical recipient of radius R and
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height H, that rotates around the symmetry
axis with constant angular velocity Q. To
describe this system we used two cylindrical
coordinate systems: one fixed in the labora-
tory, and the other rotating with angular
velocity Q, but having the same origin and
the same Z axis as the fixed system (Fig-

_’
ure 1), If we denote U , the thermal velocity
of a molecule measured in the rotating co-

_}
ordinate system, and V the velocity of the
same molecule measured in the fixed coor-
dinate system, we can write

- =
V =U +8 x7 5]

where 7 is the position vector of the mole-
cule in the fixed coordinate system. The

term Q x 7 in Equation [5] is the drift
velocity of the fluid over the thermal velocity
of the molecules. The corresponding energy
in the rotating coordinate system is given

by:

E=p. U -L. (6]

where L is the Lagrangian mv?/2 and

Q)

L -
p= i mU +mQ x7

From Equations [5] and [6], one ob-
tains for the energy in the rotating system

E

L 7

2

Once we have the above expression, we
can write the local equilibrium distribution
function as:

9= Cexp [— ,%J 18]

where C is a normalization constant. Using
the cylindrical radial variable p = r
send = [x* + y?]'/2, where 0 is the angle

—— e ] ——

h)

-
=

Figure 1. The force component Fop=AP,y,
where P, is the stress tensor compo-
nent, on a section fluid of area A.

between r and €, it can be shown from
Equations [7] and [8], that the local distri-
bution function can be written as

=y 3/2 r
f20.U) = ”“”[EE%J exp L %] 9]

where n ( p) is the local density:
2 2
Nisss (@_P
np) = 2L
O HIT {ex [nﬂz# ]

: [10]
mQ? ]

In order to get Equation [9] the con-
stant term C appearing in’ Equation [8]
should be determined by the condition that
the total number of molecules N be equal to:

N=[fO dud’r, (1]
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Transition regime viscosity of a gas

where d* r = pdpd¢dz and d”U = U, dU,, dB
dU,. B being in the velocity space, what ¢ is
in the coordinate space. In the determina-
tion of C, straightforward calculations of
integrals of the type I e N X"dX, where a is
a
either 0 or--, are necessary (4,12). From
Equations [9] and [10] it can be observed,
that as a consequence of the rotation, a
dependence of the density with the cylindri-
cal radial variable p appears. On the other
hand, it can be verified from Equation [10]
that lim n(p) = N/V = const, where V is the
020
volume of the cylinder.

II1. Viscosity of a dilute gas in a
centrifuge field of force,
calculated by the path integral
method

According to the path integral method
(12), the molecular distribution function
can be expressed as

f t

— — ds | dt
U= | o, Un.t=t - — -
fip.U 0 le_f (po.Uo.t=t) exp |~ [ 2= =070

-t

112]

Succesive use of the relation
X
d/rIX_[f{s) ds = fixy and the technique of
X,
integrations by parts on Equation [12], re-
sults in the following expression:

i ar®
J=f -H(I-f’)‘d—fh':m

' =0 1

) g ) d(l.n
W) 4, [m I}de'

L BT § O i
r{t—t)dt{t(t_.t}d{[t{t—t) dr | +... [18]

where ¥ is given by Equation (9]
U=U, U, Uy and U, = v, Ug= v4(p) —0e(p)
Uz: VZ

Following a similar procedure to that

previously described (4), but starting from
Equations [9], [13] and the expression for

the tangential stress P, = rnJ’r-!;i Uy, U, a
Burnett-type expression is found:

v a K2T®
o o3 KT
Ppo:" flf(?‘tg—:h m
[ 52 2—]) 272 3%y
I d°n 3 (dn dv, a KT 9V
22— -S| |8 ——— 14
| o9p® m™l\op) | dp m o'

The second term in the r.h.s. of Equa-
tion [14] takes into account the correction
to viscosity coming from the density vari-
ation with p due to the rotation of the gas.
For the sake of simplicity we will consider
in what follows that this correction can be
neglected, since, for instance, for
Q=0571s", Ry, = 25.5 cm, T = 293 K
and m = 6.64 x 102 g, we have from
Equation [10] that the ratio of the factors

proportional to t°, which respectively mul-
tiply dv,/dp and 8"y, /dp” in Eq. (14), yield

o 3
[ 52 \
d 30 . iy
ﬂz—;‘—é DBl e =10 em(15)
ﬂl ap n ap L mas

Modifications of the values for Q and
R . given above by an order of magnitude
produce a modification of at most two order
of magnitude of the ratio given in equation
[15]. This means that the second term in the
right hand side of Equation [14] is negligible
with respect to the other term proportional

to t° appearing in this expression in a wide
range of situations. Yet, a combination of
large curvature and high angular velocity
will render this term important, a situation
that will be analized elsewhere. Taking
n=N/V=n (p), the remaining terms of
Equation [14], lead us to Equation [1]:
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3
v, d V, g
=¥ g l ]
ap

Poo=—" op

where n y y have the same form given in
Equation [2].

The above equation for the stress in
terms of the cylindrical variables p and ¢ is
formally identical with an analogous equa-
tion in terms of Cartesian variables that we
have already analyzed in previous papers
for the vanishing temperature gradient case
(4). Yet, the cylindrical geometry appears
through the boundary conditions discussed
in the introduction (Equations [3] and [4]),
which we use together with

2anPp¢ = const. [16]

to solve Equation [1]. The above condition
corresponds to that case in which concen-
tric layers with zero relative acceleration,
exist.

Using the change of variable
y = p d v,/dp one obtains from Equations [1]

and [16]

ﬂ—%%+[1+—2—]y=i [17]

0)2

P
= py 2. M
a=s-p , 0 = [18]
Y ¥

Finally it can be shown that Equation
[17] is equivalent to
d*v k
ol X 1Al
with y = xV(x) and k= a/w®. This linear
nonhomogeneous equation can be solved

using the method of variation of parameters
(13), which yields:

V(x) = (C) + kSI(e) — kSI(x)) cosx +
(Cy — KCI(B) + kCI(x)) sinx [20]

where Sl (x) and CI (x) are the well known
integral functions (14)

Using the same change of variables
previously used in passing from Equation
[1] to Equation [19], one obtains:

Vy() = (Cy+ kSI(a)sinx + (k CI (B)-Cy)cosx —
keSI(x)sinx — kCI (x)cosx + k Lnx + C [21]
which together with the boundary condi-

tions given in Equations [3] and [4], finally
lead to the component of the stress tensor:

[ ai + az AR |
. . <| ~ ik Mg |} Av
K26 = M0 e T
R’i
ll g2-g1+In(Re /By —(fi+fz) m{%’? ]] ijl 4
[22]

where g; = g(R;). g, = gRy). f; = [ (Ry)
_f2 EHR2) and

g( k) = %Sinm.ﬁ'- ClloR)coswi
- Sl(oMsinwk (23]
and

B = gcoscoﬂ’ + ClloMsino &

— Sl{wK)cosw K [24]

It can be shown that the limit R}, Ry — o of

Pp¢ given in Equation [22] with
AR = L = const, leads to the expression of the
stress tensor corresponding to a planar geo-
metry given in Equation [41] of Ref. 4. On
the other hand, the high density limit of
Equation [22] gives also the correct conti-
nuous regime expression.

The component of the stress tensor
Pde, given in Equation [22] presents avoid-

able indeterminations of the type oo /e
when

0AKR b1
> ->(2M+1)§ [25]
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for M integer. In contrast with the planar
case, Pg , remains finite for Knudsen num-

ber values corresponding to Equation [25].
These values of K, fall in the narrow regions
of rapid variation of Pm*’*’ﬁ appearing in
Figure 2. These narrow regions are separa-
ted in density by

1 i
an="37 [26]
_1 a"!l..\“ﬁ.'ﬁ
| 3m°
where we have used o =(8/ 3m)! 2\ gn(see

Equation 18 and Equation 25). The relation
between the Knudsen number K, and the
density being given by
K, = 1/1(16/3m)' on AR].

The boundary conditions enter in the
expression for F,,. Equation [22], through

the gquantity

dy + ﬂz._

B(K,) = [27]

(v - v
| AR
A

In Figure 2 we have represented
Egl I—"g‘f as a function of pressure for a gas
having a cross-section o = 80 x 1071¢ em?,
T=293 K R, =2.5cm and Ry = 5.4 cm.
This rather high value of o which may cor-
respond to a polyatomic molecule like eth-
ane, has been taken in order to illustrate a
case in which the effective viscosity oscil-
lates with pressure several times in the
range going from O to 40 pm Hg. In Figure
2 K,, = 1 corresponds to 0.92 pm Hg in the
horizontal axis. Although K, explicity ap-
pears in the expression of Py ! P[F:f we cannot
deduce how this ratio depends on K,,, since
the expression of a, + a, as a function of K
will require a microscopic characterization
of the surfaces along with a detailed knowl-
edge of their interaction with the molecules
of gas. However, we may expect |B (K )| to be

less than 1 in the transition and Knudsen

regimes, since by definition of the mean free
path ¢, the molecules either approaching or
departing from a surface will move with
uniform linear velocities in a region of width

Fet measured from the wall (10). Then for

K, ~1,i.e. 7 ~R, where R is a macroscopic
distance, we may expect that a; =0 and
a, = 0 and therefore |a; + a5 <<[{vz-v JI/AR

for usual tangential velocities of the moving
surfaces.

We have considered several types of
variations of B(K,)) in order to evaluate the
effect of the boundary conditions on the

dependence of pmgpipfy on K. In the first row

of Figure 2 we have illustrated the case
corresponding to boundary conditions inde-
pendent of K., taking B= 0.5 and B=-0.5,
respectively. As can be seen in the second
and third rows the pattern of the variation

of qu,,-"P{P%} remains quite unaltered as we

consider successively linear, oscillating and
random (between O and 1) variations of B
with K, . This result is relevant to the ques-
tion whether or not the variation of the
boundary conditions with K, giving rise to
a dependence of B with K, (see Equations
[22] and [27]), wash out the regions of rapid
variation of the effective viscosity with den-
sity. According to the above results (Fig-
ure 2) this seems not to be the case, which
gives support to our determination of a from
the experimental results of gases in the
transition regime evaluating the separation
An between regions of rapid variation of

Ppn*”j:n[d::] and then using Equation [26] to

calculate o that we have reported in Refs. 5,
10 and 11.

Let us stress that this type of non-
monotonic dependence of the effective vis-
cosity with density for gases in the transi-
tion regime, (given in Equation [41] of a
previous paper (4) for the planar case, and
in Equation [22] of the present paper for the
cylindrical case), corresponds to a fluid in a
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Figure 2. Effective viscosity I’N/PSE determined from Eq. (24), vs preassure from p=0 to p=40 puHg, for

a gas with cross-section 6=80 x 10710 {'m:, T=293 K, R;=2.5 cm and R,=5.4 cm for B=0.5, -0.5,
p/40, RAN(0,1), sin[20(Ry-Ry)] and sin[4m(Ry-Ry)].

steady state of unaccelerated layers. For the
planar case this condition of laminar fluid
is introduced through the requirement that
P, be independent of the z coordinate, and,
in the present paper, through Equation [16],
which is a condition of concentric unaccel-
erated layers (15).

IV. Concluding Remarks

Following a simple procedure derived
from the path integral method we have ob-
tained an expression for the effective viscos-
ity of a gas in the transition regime. The gas

has been considered to be confined between
two concentric cylindrical surfaces given
rise to an expression for the effective viscos-
ity more general than that obtained pre-
viously for a planar geometry. We have
found that the curvature has a moderate
effect on viscosity in the condition analyzed
in the present paper. In particular, the spa-
tial variation of density produced by rota-
tion has been neglected, a situation fre-
quently occurring in coaxial cylinders sys-
tems used in experimental measurements
of viscosity. For the case of cylindrical ge-
ometry analyzed here a pattern of rapid
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variations of the effective viscosity within
equally spaced narrow regions in density is
obtained in the transition regime, an analo-
gous result to that previously obtained for

of effecttve viscosity on the Knudsen num-
ber for nitrogen and argon gases in the
transition regime. Phys Rev 4, A 29: 2263
2264, 1984.

the planar geometry case. Therefore, ac- 6. CHA C.Y.. McCOY B.J.: Third order consti

cording to the results of this paper, the tutive equations and transport in rarified

regions of rapid variation of the effective gases. J Chem Phys 7.56: 3265-3273,

viscosity with density in the transition re- 1979.

gime predicted by our theoretical expres- 7 CHA C.Y.. McCOY B.J.: Burnett theory of

sions seem not to be a CORBEQUERCE of the thermal transpiration with wall accommo

rather artificial geometry of a system formed dation. J Chem Phys 7.56: 3273-3277.

by a gas between infinite parallel plates (4). 1979

Finally, we have examined how the 8. KOGAN M.N.: Rarified Gas Dynamics.

dependence of the effective viscosity with Plenum, New York (U.S.A)), 1969, Chaps. 3

density in the transition regime is perturbed and 5.

when variation of the boundary conditions 9. HIRSCHFELDER J.C.. CURTISS C.F.,

with density is considered. We have found BIRD R.B.: Molecular Theory of Gases

that monotonic and non mono@(mic (oscil- and Liquids. Wiley, New York (U.S.A),

lating and random) variations of B (K,,) with 1054, pp. 18-21, Chaps. 7 and 11.

K, does not destroy the pattern ol rapid . i

variation of the effective viscosity within 10. MORONTAD., GARCIA-SUCRE M.:Visoos

equally spaced narrow regions of K,,. ity model for gafses in the t‘ra.msIUcm regime.
Phys Rev 2, A 29: 756-766, 1978.
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