
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rev. Fac. Agron. (LUZ). 2026, 43(1): e264307 January-March ISSN 2477-9409.
6-7 |
Figure 8 shows the TDS values in the water; productive units of less
than 7 ha reected values in a range of 0.45 ± 0.13 ppt TDS. However,
for productive units with 30 or more ha, the value was higher with 0.86
± 0.30 ppt of TDS in the months evaluated, so they do not have any
degree of restriction for agricultural use. The General Directorate of
Water (2017) reports TDS values ranging from 0.10 ppt to 2 ppt.
Water quality values recorded in the wells for the variables pH, EC,
and TDS in small producers ranged from 6.63 to 7.16 for pH, 0.43
to 1.42 mmhos.cm
-1
for EC, and 0.20 to 0.71 ppt for TDS. However,
large producers showed a slight increase in the evaluated variables,
with pH values from 6.55 to 7.40, EC from 0.80 to 2.59 mmhos.cm
-1
,
and TDS from 0.40 to 0.71 ppt. These values present no restrictions for
agricultural use according to the General Directorate of Water (2017).
Table 1 details the estimation of the volume of water for irrigation
of small producers, where they have a range of 394 m
3
to 2,940 m
3
of
irrigation per day; however, for large producers, the volume of water
discharge for agricultural irrigation was 17,500 to 73,040 m
3
of water
per day. On the other hand, in the dry season, the application volumes
ranged from 9,846 m
3
to 115,050 m
3
in small producers, and in large
producers, 2,625,000 m
3
to 11,102,080 m
3
to meet the water needs of
the aforementioned crops.
Table 1. Estimation of the volume of irrigated water in the dry
season, Vinces canton.
Producer
Irrigated
area (ha)
Volume of irrigated
water (m
3
) per day
Total volume of irrigated
water (m
3
) in the dry
season
Producer 1 3 2,940 73,500
Producer 2 3 4,602 115,050
Producer 3 3 543 13,575
Producer 4 3 959 23,975
Producer 5 3.5 - -
Producer 6 3.5 394 9,846
Producer 7 6.5 27,200 680,000
Producer 8 30 17,500 2,625,000
Producer 9 70 73,040 11,102,080
Producer 10 100 36,680 5,758,760
Prepared by the authors.
Figure 8. Total Dissolved Solids (TDS) in the irrigation water of
the Vinces canton.
Conclusions
The declines in static levels were constant and progressive in
the dry season due to the irrational use of water through pumping
systems for agricultural use. The dynamic levels through the pumping
test determined maximum drawdowns between 6 to 8 m in depth;
however, the recovery of wells had constant rising levels, identifying
aquifer recharge.
Recommendations
Producers, knowing the behavior of the hydrodynamic and
hydrochemical levels of groundwater used in the production of
perennial crops, should improve the use of water resources in
the Vinces canton, Ecuador. Access to adequate groundwater and
sustainable management of water resources are essential to ensure
food security and agricultural development.
Literature cited
Aguirre, I., Marigue. J., Santibáñez, I., &Yánez, G. (2022). El rol de la exploración
geofísica en acuíferos profundos en ambientes semiurbanos y rurales en
cuencas andinas de ante arco: caso de estudio en acuífero del río Ñuble,
valle central de Chile. Revista Andean Geology 49 (1), 18-54. http://
dx.doi.org/10.5027/andgeov49n1-3370
Armenta, J. & Gallardo, R. (2016). Caracterización del agua subterránea en el
valle superior del río Cesar. Revista Ingenio, 11(1), 28-42. https://doi.
org/10.22463/2011642X.2092
Dipardo, B., Barranquero, R., Etcheverria, S., Landa, R., Nicora, B., Varni, M.,
& Ruiz, V. (2021). Caracterización hidrodinámica e hidroquímica de
una cuenca rural utilizando una red monitora con perspectiva ambiental.
Revista Del Museo Argentino de Ciencias Naturales, Nueva Serie, 23(2),
115-130. https://revista.macn.gob.ar/index.php/RevMus/article/view/711
Dirección General de Aguas. (2017). Diagnóstico de la calidad del agua
subterránea de la región de Coquimbo. https://bibliotecadigital.ciren.cl/
items/ca27e100-aef2-44cc-ac3b-3d4fb98a9bc6
Gómez, H. (2020). Análisis de niveles piezométricos y patrones de captación
de agua subterránea en el acuífero cuaternario de Yopal, Casanare,
Colombia. Boletín de Geología, 42(2), 89-103. https://doi.org/10.18273/
revbol.v42n2-2020005
Hernández, L., Villarreal, L., Ramírez, B., Ocampo, I., Jaramillo, J., Ortiz, B. &
Tochihuitl, A. (2020). Temporal variability of the groundwater level in
the Tecamachalco Valley aquifer, Puebla, México, 1997-2016. Ingeniería
Agrícola y Biosistemas, 12(1), 03-20. https://doi.org/10.5154/r.
inagbi.2018.09.018
Hoogesteger, J. & Wester, P. (2018). Gestión del agua subterránea de uso agrícola:
los retos de la sustentabilidad socio-ambiental y la equidad. Cuadernos
de Geografía de La Universitat de València, 101, 51-62. https://doi.
org/10.7203/cguv.101.13720
Jasechko, S., Seybold, H., Perrone, D., Fan, Y., Shamsudduha, M., Taylor, R.,
Fallatah, O. & Kirchner, J. (2024). Rapid groundwater decline and some
cases of recovery in aquifers globally. Nature, 625(7996), 715-721.
https://doi.org/10.1038/s41586-023-06879-8
Instituto Nacional de Meterología e Hidrología [INAMHI]. (2023). Boletín
agroclimático decadal, boletín informativo No. 16-2023. Guayaquil:
Instituto Nacional de Meteorología e Hidrología (INAMHI). https://www.
inamhi.gob.ec/pronostico/cwrf/2023/Boletin_CWRF.pdf
Loor, Á., Carrión, R. & Mantilla, G. (2019). Vulnerabilidad de los acuíferos ante
la percolación de agroquímicos en el cantón Gral. Antonio Elizalde.
Universidad y Sociedad, 11(2), 395-401. https://rus.ucf.edu.cu/index.php/
rus/article/view/1204/1252
Machado, L. (2023). Hacia una gestión sostenible del agua
subterránea. Perspectiva, 2(22), 30-39. https://produccioncienticaluz.
org/index.php/perspectiva/article/view/41377
Ministerio de Agricultura y Ganadería Ecuador (MAG). (2023). Boletin
Situacional del Cultivo de Banano. https://sipa.agricultura.gob.ec/index.
php/situacionales-agricolas/situacional-banano
Mancilla, O., Anzaldo, B., Guevara, R., Hernández, O., Palomearía, C., Figueroa,
Y., Ortega, H., Flores, H., Cam, A., Cruz, E., Sánchez, E., Olguim, J. &
Mendoza, I. (2021). Calidad del agua subterránea para uso agrícola en
Zacoalco de Torres y Autlán de Navarro, México. Terra Latinoamericana,
39, 1-12. https://doi.org/10.28940/TERRA.V39I0.745