© The Authors, 2025, Published by the Universidad del Zulia*Corresponding author:kirouani.abderrezzak@univ-medea.dz
Keywords:
Pearl millet
SSR marker
Genetic diversity
Regional diversity
Algerian landraces
Geographical dierentiation and genetic diversity of Algerian pearl millet assessed with
microsatellites
Diferenciación geográca y diversidad genética del mijo perla argelino evaluadas mediante
microsatélites
Diferenciação geográca e diversidade genética do milheto pérola argelino avaliada por microsatélites
Abderrezzak Kirouani
1,2*
Elyes Babay
3,4
Redha Ouldkiar
1,2
Badreddine Belhadi
2,5
Rachid Souilah
2,6
Leila Boukhalfoun
1
Djaafar Djabali
2
Boubekeur Nadjemi
2
Rev. Fac. Agron. (LUZ). 2025, 42(4): e254256
ISSN 2477-9407
DOI: https://doi.org/10.47280/RevFacAgron(LUZ).v42.n4.XIII
Crop production
Associate editor: Dra. Evelyn Pérez Pérez
University of Zulia, Faculty of Agronomy
Bolivarian Republic of Venezuela
1
Laboratory of Nutrition, Biodiversity and Environment,
Agronomy Department, Faculty of Sciences, University of
Médéa, Algeria.
2
Laboratoire d’Etude et de Développement des Techniques
d’Epuration et de Traitement des Eaux et Gestion
Environnementale, Ecole Normale Supérieure de Kouba,
Alger, Algeria. 16000.
3
National Gene Bank of Tunisia (BNG), Tunis, Tunisia.
4
Agricultural Applied Biotechnology Laboratory
(LR16INRAT06), Institut National de la Recherche
Agronomique de Tunisie (INRAT), University of Carthage,
Tunis, Tunisia.
5
Département des sciences et techniques, Faculté de
technologie, Université Amar Télidji, Laghouat, Algeria.
6
Département de physique, Ecole Normale Supérieure Taleb
Abderrahmane, ENSL, B.P 4033. Laghouat, Algeria.
Received: 27-08-2025
Accepted: 15-11-2025
Published: 08-12-2025
Abstract
Pearl millet, a drought-tolerant cereal, is a crucial role in
food security, in arid and semi-arid regions. Despite its global
signicance, genetic diversity of Algerian pearl millet populations
remains underexplored. This study assessed the genetic diversity of
22 pearl millet genotypes from four distinct Saharan agroclimatic
zones in Algeria using 24 SSR markers. A total of 87 alleles were
detected, with an average of 3.62 alleles per locus and polymorphic
information content (PIC) values ranging from 0.043 to 0.815,
indicating substantial genetic variability. Analysis of Molecular
Variance (AMOVA) revealed greater genetic variance within
individuals than among them. Genotypes from Tamanrasset and In
Salah exhibited higher diversity than those from Oued Souf and
Adrar, with private and rare alleles underscoring the impact of
geographic isolation. Cluster analysis and principal coordinates
analysis (PCoA) grouped genotypes by geographic origin,
identifying ve major genetic groups, conrming patterns of
gene ow and local adaptation. Populations from Niger and India
were highly genetic distant from Algerian landraces making them
promising candidates for heterotic hybrid development. These
ndings provide insights for broadening the genetic base of breeding
strategies targeting yield and stress resilience in pearl millet.
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rev. Fac. Agron. (LUZ). 2025, 42(4): e254256 October-December. ISSN 2477-9409.
2-8 |
Resumen
El mijo perla, cereal tolerante a la sequía, es esencial para la
seguridad alimentaria en regiones áridas y semiáridas. A pesar de su
importancia global, la diversidad genética del mijo perla en Argelia
sigue poco estudiada. Este trabajo evaluó 22 genotipos de cuatro
zonas agroclimáticas saharianas mediante 24 marcadores SSR. Se
detectaron 87 alelos (media= 3,62 por locus), con valores de contenido
de información polimórca (PIC) entre 0,043 y 0,815, lo que evidencia
una variabilidad considerable. El Análisis de Varianza Molecular
(AMOVA) mostró mayor varianza dentro de los individuos que entre
ellos. Los genotipos de Tamanrasset e In Salah presentaron mayor
diversidad que los de Oued Souf y Adrar, destacando la presencia
de alelos privados y raros por efecto del aislamiento geográco. Los
análisis de conglomerados y de coordenadas principales (PCoA)
agruparon los genotipos por origen geográco, identicando cinco
grupos genéticos principales. Las poblaciones de Níger e India
mostraron gran distancia genética respecto a las argelinas, lo que las
convierte en candidatas prometedoras para el desarrollo de híbridos
heteróticos. Estos resultados aportan información útil para ampliar
la base genética en programas de mejoramiento orientados a la
productividad y la resiliencia al estrés del mijo perla.
Palabras clave: Mijo perla, marcador SSR, diversidad genética,
diversidad regional, razas locales argelinas.
Resumo
O milheto pérola, cereal tolerante à seca, é fundamental para a
segurança alimentar em regiões áridas e semiáridas. Apesar de sua
relevância global, a diversidade genética do milheto na Argélia
permanece pouco explorada. Este estudo avaliou 22 genótipos de
quatro zonas agroclimáticas saharianas utilizando 24 marcadores
SSR. Foram detectados 87 alelos (média= 3,62 por loco), com
valores de conteúdo de informação polimórca (PIC) entre 0,043
e 0,815, indicando elevada variabilidade. A análise de variância
molecular (AMOVA) mostrou maior variação dentro dos indivíduos
do que entre eles. Genótipos de Tamanrasset e In Salah apresentaram
maior diversidade que os de Oued Souf e Adrar, com alelos privados
e raros reetindo o impacto do isolamento geográco. As análises
de agrupamento e de coordenadas principais (PCoA) organizaram
os genótipos por origem geográca, identicando cinco grupos
principais. As populações do Níger e da Índia mostraram grande
distância genética em relação às argelinas, tornando-se candidatas
promissoras para o desenvolvimento de híbridos heteróticos. Esses
resultados fornecem subsídios para ampliar a base genética em
programas de melhoramento voltados à produtividade e à resiliência
ao estresse do milheto pérola.
Palavras-chave: Milheto pérola, marcador SSR, diversidade
genética, diversidade regional, raças locais argelinas.
Introduction
Pearl millet (Pennisetum glaucum (L.) R. Br.) is the sixth most
important cereal crop worldwide, after maize (Zea mays L.), rice
(Oryza sativa L.), wheat (Triticum aestivum L.), barley (Hordeum
vulgare L.), and sorghum (Sorghum bicolor (L.) Moench), and
it remains a key staple in arid and semi-arid regions due to its
resilience to drought, poor soils, and high temperatures (Shinde et
al., 2020; Deevi et al., 2024). India accounts for about 42 % of global
production, followed by Niger, China, and several African countries
(Yadav et al., 2021).
Pearl millet (Pennisetum glaucum [L.] R. Br.) was domesticated
in the western Sahel of Africa around 4000-5000 years ago and
subsequently spread across arid and semi-arid regions of Africa and
Asia (Oumar et al., 2008; Manning et al., 2011). It has become a vital
staple crop in environments where rainfall is scarce, temperatures
are high, and soils are poor-conditions under which other cereals
rarely succeed (Yadav et al., 2021). Its wide ecological distribution
has led to the accumulation of considerable phenotypic and genetic
variability, reected in diverse landraces adapted to contrasting
environments (Serba & Yadav, 2016). This diversity, shaped by both
natural selection and farmer seed exchange, forms a key resource
for breeding programs targeting drought tolerance, earliness, and
nutritional quality (Satyavathi et al., 2021; Govindaraj et al., 2020).
Morphologically, it exhibits wide variability in panicle size, tillering
capacity, and grain color, while physiologically, it displays deep
rooting and ecient water use typical of C₄ cereals (Satyavathi et
al., 2021). In addition, Lemgharbi et al. (2023) revealed signicant
morphological diversity among local, domesticated, and wild forms in
Tidikelt region, mainly in plant height, panicle traits, and seed color.
These landraces demonstrated strong adaptation to extreme Saharan
conditions and high phenotypic variability, suggesting valuable
genetic resources for future breeding and conservation programs.
Despite these phenotypic insights, molecular data on North African
germplasm remain scarce. Establishing the extent and structure
of their genetic variation is therefore essential for understanding
evolutionary relationships and guiding breeding strategies adapted to
local agroecological conditions.
Genetic diversity assessment of pearl millet is fundamental for
breeding programs aiming at yield improvement, stress tolerance, and
disease resistance. While morphological traits are inuenced by the
environment (Kirouani et al., 2023), molecular markers provide more
reliable evaluations of variability Kirouani et al., 2018; Triki et al.,
2023). SSRs are co-dominant, highly polymorphic, and reproducible,
making them valuable tools in plant breeding for assessing genetic
relationships and population structure (Choudhary et al., 2016). SSRs
have been widely used to characterize pearl millet genetic diversity
(Stich et al., 2010; Nepolean et al., 2012; Gupta et al., 2018).
Furthermore, assessing genetic diversity in pearl millet landraces
is particularly important for hybrid development, as diversity among
inbred line enables the identication of parental combinations
that contribute benecial alleles for yield improvement and stress
adaptation (Singh & Gupta 2019). However, most previous studies
have focused on West African populations (Rhoné et al., 2020),
whereas little information exists for North African germplasm,
especially in Algeria-the northernmost limit of pearl millet distribution
in Africa. Algerian landraces have evolved under contrasting Saharan
and sub-humid environments, from oasis systems to Mediterranean
foothills, potentially harboring unique allelic combinations associated
with drought resilience and local adaptation. This work therefore
constitutes the rst comprehensive molecular characterization
of Algerian pearl millet using SSR markers, lling a signicant
geographical and genetic gap in the species’ diversity analysis. The
ndings provide a national contribution to the understanding of pearl
millet diversity and oer a valuable resource for future regional
breeding, conservation, and germplasm exchange programs. The
objectives of this study were to: (i) assess the genetic diversity among
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Kirouani et al. Rev. Fac. Agron. (LUZ). 2025, 42(4): e254256
3-8 |
sown in eld plots during April 2024, at a depth of about 2 cm in clay-
loam soil. The soil was irrigated before sowing to ensure uniform
germination, and manual watering was provided when needed until
seedling establishment. Leaf samples were collected 15 days after
sowing, when plants reached the three-leaf stage. Five fresh leaves
were placed in labeled glass tubes, kept in a portable icebox (Iceco
GO20, China), and transported to the laboratory of molecular biology
(University of Médéa) for DNA extraction using CTAB method
(Fulton et al., 1995). A set of 24 highly polymorphic SSR primers
(Figure 1, Table 3) were selected. PCR amplication was conducted
in thermal cycler (Bioer Life Eco, China) in a total volume of 25
μL, containing approximately 50 ng of genomic DNA, 2.5 μM of
each primer, green reaction buer including 1.5 mM MgCl
2
, 1U Taq
DNA polymerase (GoTaq, Promega, USA), and 2.5 mM of each
dNTP (Thermo Fisher Scientic, USA). Amplied DNA fragments
were separated on 2 % agarose gels using an electrophoresis unit
(Thermo Fisher Scientic, USA) and fragment sizes were estimated
by comparisons with 100 bp DNA ladder (GeneRuler, Thermo Fisher
Scientic, USA).
Data analysis
Genetic diversity parameters, including the number of alleles
(Na), eective alleles (Ne), Observed heterozygosity (Ho), expected
heterozygosity (He), Shannon’s index (I), and polymorphism
information content (PIC) were calculated using GenAlEx 6.5
(Peakall & Smouse, 2012) haploid and binary genetic loci and
DNA sequences. Both frequency-based (F-statistics, heterozygosity,
HWE, population assignment, relatedness. Principal coordinate
analysis (PCoA) was also performed in GenAlEx 6.5, while UPGMA
dendrogram was generated with MEGA 7.0 (Tamura et al., 2007)
which expands on the existing facilities for editing DNA sequence data
from autosequencers, mining Web-databases, performing automatic
and manual sequence alignment, analyzing sequence alignments to
estimate evolutionary distances, inferring phylogenetic trees, and
testing evolutionary hypotheses. Version 4 includes a unique facility to
generate captions, written in gure legend format, in order to provide
natural language descriptions of the models and methods used in the
analyses. This facility aims to promote a better understanding of the
underlying assumptions used in analyses, and of the results generated.
Another new feature is the Maximum Composite Likelihood (MCL.
Additional diversity indices, including major allele frequency,
and gene diversity, were obtained with PowerMaker v3.25 (Liu &
Muse, 2005). Population structure was assessed with STRUCTURE
software v2.3.4 using the ΔK methode (Evanno et al., 2005).
Results and discussion
Overall genetic diversity
The 24 SSR markers generated a total of 87 alleles, with an
average of 3.62 alleles per locus, demonstrating the eectiveness of the
Algerian pearl millet genotypes and (ii) examine the distribution of
allelic variation across distinct geographic zones.
Materials and methods
Plant material
Twenty-two pearl millet (Pennisetum glaucum [L.] R. Br.)
genotypes (Table 1) were collected from four contrasting Saharan
regions of Algeria-Tamanrasset (12 landraces), In Salah (8), Adrar
(1), and Oued Souf (1) representing distinct agro-climatic zones
(Table 2).
Table 1. Genotypes used in the present study.
Group
code
Name Origin and date of harvest
B1 TM-10Djf(3) In Salah (Djafou) - 2010
B2 TM-09Djf(3) In Salah (Djafou) - 2009
B3 TM-23Azzaoui AinSalah (Djafou) - 2023
B4 TM-21Lakhal(Fo) In Salah (Ouaini) - 2021
B5 TM-21SoumDjf In Salah (Djafou) - 2011
B6 TM-1-11FE(Fo) In Salah (Foggaret Ezzoua) - 2011
B7 TM-21NadjMed In Salah (Ouaini) - 2021
B8 TM-21Arialla(Liss) In Salah (Foggaret Ezzoua) - 2021
B9 TM-22Grenet Oued Souf - 2022
B10 TM-16NadjMed(Fo) Adrar (ex-Touat) - 2016
B11 TM-21HamdiZerga(Loc) Tamenrasset (Center) - 2021
B12 TM-21HamdiN/Tam(06) Tamenrasset (Niger) - 2021
B13 TM-16NadjMed(Mel) Tamenrasset (ex-Ahagar) - 2016
B14 TM-22Mham(4) Tamenrasset (India) - 2022
B15 TM-22Nasse(Mel) Tamenrasset (In M’guel) - 2022
B16 TM-22LaghnedjMed Tamenrasset (Abalessa) - 2022
B17 TM-22ZergaTaleb(Loc) Tamenrasset (In Dalag) - 2022
B18 TM-22LaghnedjAh(Mel) Tamenrasset (Abalessa) 2022
B19 TM-21Laghnedj(Mel) Tamenrasset (Abalessa) - 2021
B20 TM-22N/Tam(2) Tamenrasset (Niger) - 2022
B21 TM-21N/Tam(Soud) Tamenrasset (Niger) - 2021
B22 TM-21Zerga-Tam(Loc) Tamenrasset (Center) - 2021
The contrasting environmental conditions are expected to
inuence morphological and adaptative traits among landraces such
as plant height, panicle structure, seed color, and owering time,
reecting underlying genetic dierentiation, as suggested by previous
study on African pearl millet populations (Rhoné et al., 2020).
DNA extraction and PCR amplication
The experiment was conducted at the Ouamri experimental site
Médéa (36°12’18.2”N 2°31’30.0”E), under moderate sub-humid
climatic conditions. Seeds of each genotype (three per spike) were
Table 2. Environmental characteristics of the four collection sites in Algeria.
Study site Coordinates (DMS) Altitude (m) Rainfall (mm·yr⁻¹) Temp. (°C) Soil type
Tamanrasset 23°48′54″ N, 5°55′56″ E ~1,400 < 100 38–42 Sandy-loam
In Salah 27°11′53″ N, 2°27′47″ E ~270 < 30 > 45 Sandy-stony
Adrar 28°48′14″ N, 0°19′09″ E ~263 < 30 > 45 Sandy
Oued Souf 33°26′08″ N, 6°53′34″ E ~80 < 100 35–40 Sandy
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rev. Fac. Agron. (LUZ). 2025, 42(4): e254256 October-December. ISSN 2477-9409.
4-8 |
selected primers. Amplicons sizes ranged from 85 bp (IRD 46) to 378
bp (Xpsmp 2001), comparable to values reported in previous studies
(Chandra et al., 2020; Kumar et al., 2020; Gunguniya et al., 2023)
polymorphism data generated using 42 simple sequence repeat (SSR.
PIC values ranged from 0.043 (Xpsmp 2227) to 0.815 (Xpsmp 2070),
with a mean of 0.458 (Table 3). Nearly half of the markers (46 %) had
PIC > 0.50, conrming their high discriminatory power, consistent with
ndings in other pearl millet germplasm (Bougma et al., 2021).
The number of alleles per locus varied from 2 to 7, and loci with
higher allele numbers tended to show higher PIV values, conrming
the correlation between allelic richness and informativeness (Kumar
et al., 2020; Sangwan et al., 2019). The observed range was higher
than that reported for west African landraces (Singh et al., 2013;
Bougma et al., 2021; Makwana et al., 2021) but lower than values
found in more diverse international panels (Sangwan et al., 2019;
Gunguniya et al., 2023). Such dierences may reect germplasm
origin, marker choice, and resolution of electrophoresis techniques.
The number of eective alleles (Ne) ranged from 1.05 (Xpsmp
2227) to 6.12 (Xpsmp 2070), with an overall average of 2.42 (Table
3). These values indicate substantial genetic variation across loci. The
high Ne values correlate with genotypic diversity and are inuences
by the marker type and the resolution of the fragment separation
technique (Kuang et al., 2022). Lower values were obtained than
those reported by (Bougma et al., 2021).
Observed heterozygosity (Ho) averaged 0.411, ranging from 0.045
to 1.000, while expected heterozygosity (He) averaged 0.516, ranging
from 0.044 to 0.836. The high He values at several loci highlight
the considerable allelic richness of Algerian pearl millet, while the
variation in Ho indicated unequal distribution of heterozygotes
across loci. These results conrm the presence of substantial genetic
diversity. and in line with the cross-pollinating nature of pearl millet.
Similar results of heterozygosity have been reported in international
pearl millet panels (Chandra et al., 2020; Kumar et al., 2020; Rani
et al., 2024). Similar ranges have also been documented in regional
studies, particularly in west Africa and Sudan (Bashir et al., 2015;
Bougma et al., 2021). These agreement between regional reports and
our results conrms that substantial diversity is maintained across
dierent African pearl millet despite environmental constraints.
The xation index (F), indicating allelic xation within
populations, averaged 0.225 and ranged from -0.619 to 0.832. These
results suggest a moderate inbreeding level in the studied populations.
The variation in F values across loci reveals dierent evolutionary
pressures.
Genetic diversity by region
Signicant dierences were observed among the four studied
regions (Table 4). Tamanrasset and In Salah displayed the highest
genetic diversity, with 78 and 71 alleles detected, respectively, along
with several private and rare alleles, conrming their roles as major
Table 3. Number of Alleles, Major Allele Frequency, Heterozygosity, Genetic diversity, polymorphic information content and genetic
dierentiation by locus.
Primers
Amplicon size
(bp)
Na
1
Ne
2
MAF
3
Ho
4
He
5
PIC
6
F
7
Xpsmp 2008 194-265 7.000 3.33 0.349 0.524 0.700 0.642 0.259
Psmp 2214 236-267 3.000 1.68 0.750 0.227 0.406 0.370 0.446
Xpsmp 2019 241-270 3.000 2.60 0.500 1.000 0.616 0.542 -0.619
Xpsmp 2237 265-295 3.000 2.38 0.524 0.222 0.580 0.497 0.622
Psmp 2247 207-214 2.000 1.37 0.841 0.045 0.268 0.232 0.832
Xpsmp 2048 210-282 6.000 2.85 0.533 0.400 0.649 0.608 0.393
Psmp 2249 152-188 4.000 1.45 0.818 0.136 0.309 0.280 0.564
Xpsmp 2063 163-270 6.000 4.85 0.295 0.909 0.794 0.764 -0.138
Xpsmp 2043 138-158 3.000 2.36 0.545 0.364 0.577 0.499 0.376
Xpsmp 2070 174-251 7.000 6.12 0.214 0.762 0.836 0.815 0.097
Xpsmp 2201 330-368 4.000 1.63 0.765 0.394 0.386 0.353 -0.012
Psmp 2202 132-149 2.000 1.89 0.621 0.576 0.471 0.360 -0.216
Psmp 2206 190-210 4.000 2.83 0.523 0.439 0.646 0.599 0.327
Psmp 2219 268-275 2.000 1.90 0.614 0.136 0.474 0.362 0.716
Psmp 2220 145-175 3.000 1.98 0.667 0.429 0.495 0.441 0.143
Xpsmp 2227 200-220 2.000 1.05 0.977 0.045 0.044 0.043 -0.016
Psmp 2231 260-279 2.000 1.82 0.659 0.409 0.449 0.348 0.097
IRD 12 190-210 2.000 1.71 0.705 0.591 0.416 0.330 -0.413
IRD 46 85-122 4.000 1.41 0.833 0.258 0.292 0.274 0.126
Xpsmp 2267 131-202 4.000 2.37 0.598 0.412 0.578 0.530 0.297
Xpsmp 2090 148-186 4.000 2.88 0.474 0.684 0.652 0.592 -0.040
Xpsmp 2248 145-184 2.000 1.95 0.579 0.211 0.488 0.369 0.574
Xpsmp 2001 193-378 5.000 3.34 0.465 0.579 0.700 0.660 0.182
Xpsmp 2076 148-169 3.000 2.31 0.556 0.111 0.568 0.489 0.808
Mean 3.625 2.42 0.600 0.411 0.516 0.458 0.225
1
Number of allele,
2
Number of eective allele,
3
Major allele frequency,
4
Heterozygosity,
5
Genetic diversity,
6
Polymorphic information content,
7
Fixation index
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Kirouani et al. Rev. Fac. Agron. (LUZ). 2025, 42(4): e254256
5-8 |
reservoirs of genetic diversity. By contrast, Oued Souf presented only
49 alleles, with reduced heterozygosity and no private alleles. Adrar
had the lowest diversity, with 45 alleles, low Shannon’s index, and
a decit of heterozygotes, reecting possible genetic erosion and
isolation. These results conrm that southern populations maintain
richer and more diverse germplasm than northern desert regions. The
presence of private alleles in the south suggests long-term adaptation
and restricted gene ow, while the reduced diversity in the north
points to genetic narrowing, possibly due to farmer selection practices
or limited seed exchange. Such geographic structuring of diversity
has also been reported in west African landraces (Bashir et al., 2015;
Bougma et al., 2021).
Table 4. Genetic diversity of landraces of Pearl millet according
to geographic origin.
Region Na Naa Ne He Ho I PIC Pa Ra
Adrar 43 1.79 1.64 0.30 0.43 0.45 0.24 0 0
In Salah 71 3.00 2.23 0.47 0.44 0.81 0.41 2 2
OuedSouf 31 1.29 1.27 0.11 0.18 0.17 0.09 0 0
Tamenrast 78 3.25 2.21 0.50 0.40 0.86 0.44 7 5
Na = Number of Alleles, Naa = Number of average alleles, Ne = Number of eective alleles =
1 / (Sum pi^2), He = Gene diversity = 1 - Sum pi^2 Where pi is the frequency of the i
th
allele for
the population, Ho = Observed Heterozygosity = No. of Hets / N, I = Shannon’s Information
Index = -1* Sum (pi * Ln (pi)), PIC = Polymorphic Information Content, Pa = Private allele,
Ra = Rare allele.
Cluster Analysis and PCoA
Based on 24 SSR markers, UPGMA analysis (Figure 1) grouped
the 66 pearl millet accessions into ve clusters. The rst cluster
(Blue) included most accessions from Tamanrasset and In Salah
which were closely associated with several Nigerian genotypes,
highlighting historical connections and gene ow across Sahelian
trade and pastoral routes. A second cluster (Red) was formed by the
Indian accessions, which remained distinct but showed partial anity
with some Tamenrasset lines, suggesting either introductions of Asian
germplasm into Algeria or convergent adaption to arid environments.
A third cluster (Green) contains only Oued Souf accessions, which
form a distinct group likely due to their geographical isolation
near Tunisia and their reduced genetic base. Meanwhile, cluster
4 (Black), included genotypes from Abalessa, Hoggar, In Saleh,
and Adrar, showing more genetic convergence, possibly to local
adaptation or shared ancestry within the region. Finally, cluster 5
(Light blue) grouped only In Saleh accessions, emphasizing their
genetic distinctiveness, probably due to long-term isolation and local
adaptation. As highlighted in similar studies Burkina Faso (Bougma
et al., 2021; Sawadogo et al., 2015) and Sudan (Bashir et al., 2015),
the sharing of seeds through inheritance and informal exchange
often result in the same populations appearing in multiple regions.
This widespread practice, as explained by Mariac et al. (2006); Vom
Brocke et al. (2003), contributes to low genetic dierentiation due to
ongoing gene ow. However, Stich et al. (2010) noted that regional
similarity can also arise from climatic selection pressures, which over
time may narrow genetic diversity.
Genetic distance analysis conrmed these patterns, with values
ranging from 0.23 between Tamanrasset and In Salah to 0.52 between
Tamanrasset and Oued Souf. This demonstrates greater similarity
among neighboring southern regions and stronger divergence between
the geographically distant northern and southern populations.
Figure 1. Dendrogram of 66 pearl millet accessions based on
banding pattern analysis of 24 SSR markers using
Nei 1983 UPGMA method. B1, B2, B3, B5 = In Salah
(Djafou). B4, B7 = In Salah (Ouaini). B6, B8 = In Salah
(Foggaret Ezzoua). B9 = Oued Souf. B10 = Adrar.
B11, B22 = Tamanrasset (Center). B12, B20, B21 =
Tamanrasset (from Niger). B13 = Tamanrasset (Hoggar).
B14 = Tamanrasset (from India). B15 = Tamanrasset (In
M’guel). B16, B18, B19 = Tamanrasset (Abalessa). B17 =
Tamanrasset (In Dalag).
Interestingly, high divergence was also observed within
Tamanrasset between sites such as the center, Hoggar, and In Dalag,
pointing to localized dierentiation even within a single region. The
information available on genetic distances can be used to predict
hybrid performance, as is done previously (Gupta et al., 2018).
Principal Coordinates Analysis (PCoA) supported the dendrogram
results, explaining 44.10 % of total variation across the rst three axes
(21.45 %, 9,69 % and 8.96 %, respectively) (Figure 2). PCoA clearly
separated Nigerien and Indian accessions from Algerian landraces,
while most accessions from Tamanrasset and In Salah clustered
close to Nigerien lines. In contrast, Oued Souf and Adrar occupied
marginal positions on the scatter plot, conrming their isolation and
limited variability.
Analysis of molecular variance (AMOVA) revealed that 66
% of the total variation occurred within individuals, 20 % among
individuals, and only 14 % among populations. This result suggests
that pearl millet exhibits high intra-individual heterozygosity, likely
due its outcrossing nature and extensive gene ow, which allows the
maintenance of genetic diversity at the individual level rather than
between groups. This ndings align with those presented earlier
(Ramya et al., 2018; Bhardwaj et al., 2018; Chandra et al., 2020)95
maintainer (B line, and further reinforce the idea that intrapopulation
variation plays a dominant role in the genetic structure of pearl millet.
The results of this study provide essential baseline information for
the genetic improvement and conservation of pearl millet in Algeria.
The detection of signicant genetic dierentiation among regional
populations indicates the presence of locally adapted alleles that
could be exploited in breeding programs targeting drought tolerance,
earliness, and yield stability under arid and semi-arid conditions.
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rev. Fac. Agron. (LUZ). 2025, 42(4): e254256 October-December. ISSN 2477-9409.
6-8 |
Figure 2. Principal component analysis (PCoA) using 24 SSR
markers of 66 accessions from four dierent regions
(In Salah, Oued Souf, Adrar and Tamanrasset) based
on Euclidean distance estimates.
The identication of genetically distinct groups also supports
the strategic selection of parental lines to broaden the genetic base
of national breeding materials. Moreover, the molecular proles
generated here can serve as a reference for germplasm conservation
and management, guiding the establishment of a representative
national core collection - how is a small subset that minimizes
genetic redundancy while preserving the maximum genetic diversity
and it is crucial for the ecient management and utilization
of germplasm resources - and facilitating the integration of Algerian
landraces into regional and international genetic resource networks.
Structure Analysis
Structure analysis identied four genetic subpopulations (K= 4),
The bar plot (Figure 3) showed that the rst subpopulation (red)
grouped accessions from Tamanrasset and India, suggesting a
historical exchange of germplasm or convergent adaptation to arid
environments. Subpopulation 2 (green) grouped accessions from
In Salah and Abalessa, and showed the highest level of admixture,
reecting its central geographic location, and possible role as a zone of
gene ow. Subpopulation 3 (blue) encompassed a broader combination
of accessions from regions such as Hoggar, In Dalag, Djafou, Adrar
and Niger. A low level of admixture was in some Adrar accessions
within this group. Subpopulation 4 (yellow) included individuals form
Oued Souf, In M’guel, Djafou, and some from Niger, reecting a high
level of shared ancestry among geographically distant populations.
The result indicates that, despite its geographical isolation, Oued Souf
may have received genetic material through historical seed exchange
or migration. These ndings are largely consistent with the results
obtained from the UPGMA dendrogram and PCoA analysis, which
also showed overlapping genetic relationships between Tamanrasset,
In Salah, and Niger. However, STRUCTURE analysis adds new
insight by showing that Oued Souf is not genetically distinct, but
rather part of a mixed gene pool.
Conclusions
The results reveal substantial genetic variability, with greater allele
richness and heterozygosity in Tamanrasset and In Salah compared with
the narrower diversity in Oued Souf and Adrar. This regional dierentiation
provides useful information for identifying genetically distant parental
lines and strengthening breeding programs aimed at adaptation to arid
conditions. The predominance of genetic variance within individuals
conrms pearl millet’s outcrossing nature and underscores the need
to preserve intra-population diversity through targeted conservation
strategies. Overall, this study enhances the understanding of Algerian
pearl millet diversity and contributes to regional eorts for crop
improvement and food security in dryland environments.
Figure 3. Bar diagram for 66 accessions arranged based on inferred
ancestry at K = 4; Color codes represent the four
subpopulations. Values in the left indicate the membership
coecient (Q). Proportions of colors in each bar indicate the
allelic aliation of the sub-populations. 1-2-3 (B1), 4-5-6
(B2), 7-8-9 (B3), 10-11-12 (B4), 13-14-15 (B5), 16-17-18
(B6), 19-20-21 (B7), 22-23-24 (B8), 64-65-66 (B9), 25-26-
27 (B10), 28-29-30 (B11), 55-56-57 (B12), 31-32-33 (B13),
61-62-63 (B14), 34-35-36 (B15), 37-38-39 (B16), 40-41-42
(B17), 43-44-45 (B18), 46-47-48 (B19), 49-50-51 (B20), 52-
53-54 (B21), 58-59-60 (B22).
Acknowledgment and funding
The authors sincerely thank the technical sta of the Ouamri
experimental station (Médéa) for their assistance with eld
management and sampling.
Funding source
This research was nancially supported by the the national bank
of Tunis (Tunisia) and the Ministry of higher education and scientic
research of Algeria.
Literature cited
Anuradha, N., Satyavathi, C. T., Bharadwaj, C., Nepolean, T., Sankar, S. M.,
Singh, S. P., Meena, M. C., Singhal, T., & Srivastava, R. K. (2017).
Deciphering genomic regions for high grain iron and zinc content using
association mapping in pearl millet. Frontiers in Plant Science, 8, 412.
https://doi.org/10.3389/fpls.2017.00412
Bashir, E. M. A., Ali, A. M., Ali, A. M., Mohamed, E. T. I., Melchinger, A. E.,
Parzies, H. K., & Haussmann, B.I.G. (2015). Genetic diversity of
Sudanese pearl millet (Pennisetum glaucum (L.) R. Br.) landraces as
revealed by SSR markers, and relationship between genetic and agro-
morphological diversity. Genetic Resources and Crop Evolution, 62(4),
579-591. https://doi.org/10.1007/s10722-014-0183-5
Bhardwaj, R., Garg, T., Malik, E. A., Vikal, Y., Sohu, R. S., & Gupta, S. K. (2018).
Genetic divergence studies in pearl millet [Pennisetum glaucum L. (R.)
Br.] inbred lines. Indian Journal of Genetics and Plant Breeding, 78(3),
382-385. http://oar.icrisat.org/id/eprint/10854
Bougma, L. A., Ouédraogo, M. H., Ouoba, A., Zouré, A. A., Sawadogo, N., &
Sawadogo, M. (2021). Genetic dierentiation for gene diversity among
pearl millet (Pennisetum glaucum (L.) R. Br.) landraces as revealed by
SSR markers. International Journal of Agronomy, 2021(1). https://doi.
org/10.1155/2021/6160903
Chandra, S., Singh, S. P., Kaswan, V., Chaudhary, S., Singh, A. M., Sankar, M.,
Meena, G., Choudhary, M., & Chellapilla, T. S. (2020). Morphological and
molecular genetic diversity analysis of pearl millet (Pennisetum glaucum)
maintainers and restorers. Indian Journal of Agricultural Sciences,
90(11), 2083-2089. https://doi.org/10.56093/ijas.v90i11.108564
Choudhary, M., Hossain, F., Muthusamy, V., Thirunavukkarasu, N., Saha, S.,
Pandey, N., Jha, S. K., & Gupta, H. S. (2016). Microsatellite marker-based
genetic diversity analyses of novel maize inbreds possessing rare allele
of β-carotene hydroxylase (crtRB1) for their utilization in β-carotene
enrichment. Journal of Plant Biochemistry and Biotechnology, 25(1), 12-
20. https://doi.org/10.1007/s13562-015-0300-3
Deevi, C. K., Swamikannu, N., Pingali, P. R., & Gumma, M. K. (2024). Current
Trends and Future Prospects in Global Production, Utilization, and
Trade of Pearl Millet. In V. A. Tonapi., N. Thirunavukkarasu., S. Gupta.,
P. I. Gangashetty., & O. Yadav (Eds.), Pearl Millet in the 21
st
Century.
Springer Nature, Singapore. https://doi.org/10.1007/978-981-99-5890-0
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Kirouani et al. Rev. Fac. Agron. (LUZ). 2025, 42(4): e254256
7-8 |
Lemgharbi, M., Belhadi, B., Souilah, R., Djabali, D., & Nadjemi, B. (2023).
Biodiversity of pearl millet (Pennisetum glaucum [L.] R. Br.) in southern
Algeria (Tidikelt region). Biodiversity Journal, 14(3), 491-504. https://
doi.org/10.31396/Biodiv.Jour.2023.14.3.491.504
Evanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters
using the software STRUCTURE: a simulation study. Molecular Ecology,
14(8), 2611-2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x
Fulton, T. M., Chunwongse, J., & Tanksley, S.D. (1995). Microprep protocol
for extraction of DNA from tomato and other herbaceous plants. Plant
Molecular Biology Reporter, 13(3), 207-209. https://doi.org/10.1007/
BF02670897
Govindaraj, M., Rai, K. N., Kanatti, A., Upadhyaya, H. D., Shivade, H., & Rao,
A. S. (2020). Exploring the genetic variability and diversity of pearl
millet core-collection germplasm for grain nutritional traits improvement.
Scientic Reports, 10, 21177. https://doi.org/10.1038/s41598-020-77818-
0
Gunguniya, D. F., Kumar, S., Patel, M. P., Sakure, A. A., Patel, R., Kumar, D.,
& Khandelwal, V. (2023). Morpho-biochemical characterization and
molecular marker based genetic diversity of pearl millet (Pennisetum
glaucum (L.) R. Br.). PeerJ, 11, e15403. https://doi.org/10.7717/
peerj.15403
Gupta, S. K., Nepolean, T., Shaikh, C. G., Rai, K., Hash, C. T., Das, R. R., &
Rathore, A. (2018). Phenotypic and molecular diversity-based prediction
of heterosis in pearl millet (Pennisetum glaucum L. (R.) Br.). The Crop
Journal, 6(3), 271-281. https://doi.org/10.1016/j.cj.2017.09.008
Kirouani, A., Boukhalfoun, L., Ouldkiar, R., & Bouzerzour, H. (2023). Analysis
of the eect of GE interaction on the grain yield and its related traits in
rainfed Algerian durum wheat (Triticum turgidum L. var. durum) grown
in contrasting environments. Revista Facultad Nacional de Agronomia
Medellin, 76(2), 10297-10308. https://doi.org/10.15446/rfnam.
v76n2.102517
Kirouani, A., Henkrar, F., Udupa, S. M., Boukhalfoun, L., & Bouzerzour, H.
(2018). Genetic diversity in Algerian durum wheat varieties (Triticum
turgidum L. var. durum) using microsatellite markers. Bioscience Journal,
34(6), 1575-1583. https://doi.org/10.14393/BJ-v34n6a2018-42332
Kuang, Z., Xiao, C., Ilyas, M. K., Ibrar, D., Khan, S., Guo, L., Wang, W., Wang,
B., Huang, H., Li, Y., Li, Y., Zheng, J., Saleem, S., Tahir, A., Ghafoor, A.,
& Chen, H. (2022). Use of SSR Markers for the Exploration of Genetic
Diversity and DNA Finger-Printing in Early-Maturing Upland Cotton
(Gossypium hirsutum L.) for Future Breeding Program. Agronomy, 12(7),
1513. https://doi.org/10.3390/agronomy12071513
Kumar, S., Hash, C. T., Singh, G., Basava, R. K., & Srivastava, R. K. (2020).
Identication of polymorphic SSR markers in elite genotypes of pearl
millet and diversity analysis. Ecological Genetics and Genomics, 14,
100051. https://doi.org/10.1016/j.egg.2019.100051
Liu, K., & Muse, S. V. (2005). PowerMaker: An integrated analysis environment
for genetic maker analysis. Bioinformatics, 21(9), 2128-2129. https://doi.
org/10.1093/bioinformatics/bti282
Makwana, K., Tiwari, S., Tripathi, M. K., Sharma, A. K., Pandya, R. K., & Singh,
A. K. (2021). Morphological characterization and DNA nger printing of
pearl millet (Pennisetum Glaucum (L.) germplasms. Range Management
and Agroforestry, 42(2), 205-221.
Manning, K., Pelling, R., Higham, T., Schwenniger, J.-L., & Fuller, D. Q. (2011).
4500-year-old domesticated pearl millet (Pennisetum glaucum) from the
Tilemsi Valley, Mali: New insights into an alternative cereal domestication
pathway. Journal of Archaeological Science, 38(2), 312-322. https://doi.
org/10.1016/j.jas.2010.09.007
Mariac, C., Luong, V., Kapran, I., Mamadou, A., Sagnard, F., Deu, M., Chantereau,
J., Gerard, B., Ndjeunga, J., Bezançon, G., Pham, J. L., & Vigouroux,
Y. (2006). Diversity of wild and cultivated pearl millet accessions
(Pennisetum glaucum [L.] R. Br.) in Niger assessed by microsatellite
markers. Theoretical and Applied Genetics,114(1), 49-58. https://doi.
org/10.1007/s00122-006-0409-9
Nepolean, T., Gupta, S.K., Dwivedi, S. L., Bhattacharjee, R., Rai, K. N., &
Hash, C. T. (2012). Genetic diversity in maintainer and restorer lines of
pearl millet. Crop Science, 52(6), 2555-2563. https://doi.org/10.2135/
cropsci2011.11.0597
Oumar, I., Mariac, C., Pham, J.-L., & Vigouroux, Y. (2008). Phylogeny and
origin of pearl millet (Pennisetum glaucum [L.] R. Br.) as revealed by
microsatellite loci. Theoretical and Applied Genetics, 117, 489-497.
https://doi.org/10.1007/s00122-008-0793-4
Peakall, R., & Smouse, P. E. (2012). GenALEx 6.5: Genetic analysis in Excel. Population
genetic software for teaching and research-an update. Bioinformatics, 28(19),
2537-2539. https://doi.org/10.1093/bioinformatics/bts460
Ramya, A. R., Ahamed, M. L., Satyavathi, C. T., Rathore, A., Katiyar, P., Bhasker
Raj, A. G., Kumar, S., Gupta, R., Mahendrakar, M. D., Yadav, R. S., &
Srivastava, R. K. (2018). Towards dening heterotic gene pools in pearl
millet [Pennisetum glaucum (L.) R. Br.]. Frontiers in Plant Science, 8,
1-11. https://doi.org/10.3389/fpls.2017.01934
Rani, R., Khandelwal, V., Jhunjhadia, S., Ambawat, S., Bhanwariya, S., Singh, A.,
& Kumar, V. (2024). Quantifying genetic diversity based on morphological
and molecular analysis in pearl millet [Pennisetum glaucum (L.) R. Br.]
inbred lines. Annals of Arid Zone, 63(3), 105-110. https://epubs.icar.org.
in/index.php/AAZ/article/view/151562
Rhoné, B., Defrance, D., Berthouly-Salazar, C., Mariac, C., Cubry, P., Couderc,
M., Dequincey, A., Assoumane, A., Kane, N. A., Sultan, B., Barnaud, A.,
& Vigouroux, Y. (2020). Pearl millet genomic vulnerability to climate
change in West Africa highlights the need for regional collaboration.
Nature Communications, 11, 5274. https://doi.org/10.1038/s41467-020-
19066-4
Sangwan, S., Yashveer, S., Kumar, R., Hemender, Sharma, S., & Redhu, N.
(2019). Multi trait analysis reveals substantial diversity in pearl millet
[Pennisetum glaucum (L.) R. Br.] inbred lines. Journal of Experimental
Biology and Agricultural Sciences, 7(4), 358-375. https://doi.
org/10.18006/2019.7(4).358.375
Satyavathi, C. T., Ambawat, S., Khandelwal, V., & Srivastava, R. K. (2021). Pearl
millet: A climate-resilient nutricereal for mitigating hidden hunger and
providing nutritional security. Frontiers in Plant Science, 12, 659938.
https://doi.org/10.3389/fpls.2021.659938
Sawadogo, N., Nanema, R. K., Bationo/Kando, P., Traore, R. E., Nebie, B., Tiama,
D., Sawadogo, M., & Zongo, J. D. (2015). Évaluation de la diversité
génétique des sorghos à grains sucrés (Sorghum bicolor (L.) Moench)
du Nord du Burkina Faso. Journal of Applied Biosciences, 84(1), 7654.
https://doi.org/10.4314/jab.v84i1.3
Serba, D. D., & Yadav, R. S. (2016). Genomic tools in pearl millet breeding for
drought tolerance: Status and prospects. Frontiers in Plant Science, 7,
1724. https://doi.org/10.3389/fpls.2016.01724
Shinde, H., Dudhate, A., Anand, L., Tsugama, D., Gupta, S. K., Liu, S., & Takano,
T. (2020). Small RNA sequencing reveals the role of pearl millet miRNAs
and their targets in salinity stress responses. South African Journal of
Botany, 132, 395-402. https://doi.org/10.1016/j.sajb.2020.06.011
Singh, A. K., Rana, M. K., Singh, S., Kumar, S., Durgesh, K., & Arya, L. (2013).
Assessment of genetic diversity among pearl millet [Pennisetum glaucum
(L.) R Br.] cultivars using SSR markers. Range Management and
Agroforestry, 34(1), 77-81. https://publications.rmsi.in/index.php/rma/
article/view/459/426
Singh, S., & Gupta, S. K. (2019). Formation of heterotic pools and understanding
relationship between molecular divergence and heterosis in pearl millet
[Pennisetum glaucum (L.) R. Br.]. PLoS ONE, 14(5), e0207463. https://
doi.org/10.1371/JOURNAL.PONE.0207463
Stich, B., Haussmann, B. I. G., Pasam, R., Bhosale, S., Hash, C. T., Melchinger,
A. E., & Parzies, H. K. (2010). Patterns of molecular and phenotypic
diversity in pearl millet [Pennisetum glaucum (L.) R. Br.] from west
and central Africa and their relation to geographical and environmental
parameters. BMC Plant Biology, 10, 216. https://doi.org/10.1186/1471-
2229-10-216
Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). MEGA4: Molecular
evolutionary genetics analysis (MEGA) software version 4.0. Molecular
Biology and Evolution, 24(8), 1596-1599. https://doi.org/10.1093/
molbev/msm092
Triki, T., Bennani, L., Boussora, F., Tlahig, S., Ben Ali, S., Gasmi, A.,
Yahia, H., Belhouchette, K., Loumerem, M., & Guasmi, F. (2023).
Characterization and trait association analysis of 27 pearl millet landraces
in Southern Tunisia. Agronomy, 13(8), 2128. https://doi.org/10.3390/
agronomy13082128
Vom Brocke, K., Christinck, A., Weltzien, R. E., Presterl, T., & Geiger, H. H.
(2003). Farmers’ seed systems and management practices determine
pearl millet genetic diversity patterns in semiarid regions of India. Crop
Science, 43(5), 1680-1689. https://doi.org/10.2135/cropsci2003.1680
Yadav, O. P., Gupta, S. K., Govindaraj, M., Sharma, R., Varshney, R. K.,
Srivastava, R. K., Rathore, A., & Mahala, R. S. (2021). Genetic gains
in pearl millet in India: Insights into historic breeding strategies and
future perspective. Frontiers in Plant Science, 12, 645038. https://doi.
org/10.3389/fpls.2021.645038
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rev. Fac. Agron. (LUZ). 2025, 42(4): e254256 October-December. ISSN 2477-9409.
8-8 |