This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
González-Pedraza et al. Rev. Fac. Agron. (LUZ). 2025, 42(4): e254248
7-7 |
ne fractions demonstrated a greater capacity for carbon retention
and pH buering, thereby enhancing microbial activity and structural
stability. In contrast, intensively managed agricultural systems
exhibited compaction and reduced aeration, which diminished
biological eciency and underscored their susceptibility to
degradation.
Conclusions
The study demonstrated that volumetric water content, electrical
conductivity, pH, total organic carbon, and basal respiration
are sensitive indicators of agricultural management, eectively
reecting the impacts of land use. Strawberry, pea, and tree tomato
systems exhibited signs of acidication, carbon depletion, and salt
accumulation, whereas pasture systems were characterized by
compaction and biological limitations. In contrast, natural forest
maintained more favorable conditions, serving as a benchmark for
soil stability and quality.
These ndings provide clear evidence that intensive land use
in mountain environments exacerbates the risk of soil degradation,
underscoring the importance of adopting conservation-oriented
strategies. Recommended practices include the correction of soil
acidity through amendments, the incorporation of stabilized organic
matter, the diversication of plant cover with legumes and agroforestry
systems, and the rationalization of chemical fertilization, all aimed at
enhancing the resilience and sustainability of agroecosystems.
Literatura cited
Aguillón-Estacio, R. J., Muñoz-España, I. A., Guerra-Acosta, A. del S., Bolívar-
Gamboa, A., & Pinzón-Sandoval, E. H. (2024). Soil physical properties
as indicators of histosol degradation in Colombia. Revista de Ciencias
Agrícolas, 41(1), e1226. https://doi.org/10.22267/rcia.20244101.226
Alef, K., & Nannipieri, P. (1995). Methods in applied soil microbiology and
biochemistry (340 p.). Academic Press.
Almendros, G., & González-Pérez, J. A. (2025). Soil organic carbon sequestration
mechanisms and the chemical nature of soil organic matter—A review.
Sustainability, 17(15), 6689. https://doi.org/10.3390/su17156689
Blake, G. R., & Hartge, K. H. (1986). Bulk density. In A. Klute (Ed.), Methods
of soil analysis. Part 1. Physical and mineralogical methods (2nd ed.,
Agronomy Monograph No. 9, pp. 363–382). American Society of
Agronomy—Soil Science Society of America.
Climate-Data.org. (2024). Clima: Pamplona. https://en.climate-data.org/south-
america/colombia/norte-de-santander/pamplona-50220/
Coca-Salazar, A., Cornelis, J.-T., & Carnol, M. (2021). Soil properties and
microbial processes in response to land-use change in agricultural
highlands of the Central Andes. European Journal of Soil Science, 72(6),
2395–2409. https://doi.org/10.1111/ejss.13110
Cotrufo, M. F., Ranalli, M. G., Haddix, M. L., Six, J., & Lugato, E. (2019). Soil
carbon storage informed by particulate and mineral-associated organic
matter. Nature Geoscience, 12(12), 989–994. https://doi.org/10.1038/
s41561-019-0484-6
Cruz Villamizar, D. V., Rodríguez Ospino, P. P., Castellanos González, L., &
Césped Novoa, N. E. (2022). Validación de una tecnología en producción
limpia de fresa a pequeña escala en la nca Sol Vida del municipio de
Pamplona, Norte de Santander. Ciencia y Tecnología Agropecuaria, 7(1),
3–18. https://doi.org/10.24054/cyta.v7i1.2769
Ewunetu, T., Selassie, Y. G., Molla, E., Admase, H., & Gezahegn, A. (2025). Soil
properties under dierent land uses and slope gradients: Implications
for sustainable land management in the Tach Karnuary watershed,
Northwestern Ethiopia. Frontiers in Environmental Science, 13, 1518068.
https://doi.org/10.3389/fenvs.2025.1518068
Farjana, S., Park, I. S., & Choi, J. M. (2024). Macro-elements in liquid fertilization
inuence dierently in occurrence and growth of runner plants in
strawberry propagation. Korean Journal of Horticultural Science &
Technology, 43(1), 108–118. https://doi.org/10.7235/HORT.20250018
Flórez Mogollón, D. A., & Ochoa, A. (2022). Diagnóstico de Buenas Prácticas
Agrícolas y Ambientales en los sistemas productivos de papa y durazno de tres
veredas del municipio de Chitagá, Norte de Santander. Ciencia y Tecnología
Agropecuaria, 7(1), 19–27. https://doi.org/10.24054/cyta.v7i1.2776
Gao, H., Yan, C., Liu, Q., Ding, W., Chen, B., & Li, Z. (2019). Eects of plastic
mulching and plastic residue on agricultural production: A meta-analysis.
Science of the Total Environment, 651, 484–492. https://doi.org/10.1016/j.
scitotenv.2018.09.105
Gardner, W. H. (1986). Water content. In A. Klute (Ed.), Methods of soil analysis.
Part 1. Physical and mineralogical methods (2nd ed., Agronomy
Monograph No. 9). American Society of Agronomy, Soil Science Society
of America.
Gee, G. W., & Bauder, J. W. (1986). Particle-size analysis. In A. Klute (Ed.),
Methods of soil analysis. Part 1. Physical and mineralogical methods
(2nd ed., pp. 383–411). American Society of Agronomy, Soil Science
Society of America. https://doi.org/10.2136/sssabookser5.1.2ed.c15
González-Pedraza, A. F., Méndez Ortega, A. J., & Quesada Vergara, V. (2023).
Respuesta del cultivo de arveja (Pisum sativum L.) a la aplicación
de abonos orgánicos en el municipio Pamplona, Norte de Santander.
La Granja: Revista de Ciencias de la Vida, 37(2), 29–40. https://doi.
org/10.17163/lgr.n37.2023.07
Huf dos Reis, A. M., Pires, L. F., & Armindo, R. A. (2024). New empirical-
point pedotransfer functions for water retention data for a wide range
of soil texture and climates. International Soil and Water Conservation
Research, 12(6), 855–867. https://doi.org/10.1016/j.iswcr.2024.01.001
IGAC, Instituto Geográco Agustín Codazzi. (2012). Estudio general de suelos
y zonicación física de tierras del departamento Norte de Santander.
Imprenta Nacional. https://www.igac.gov.co/es/catalogo/estudio-general-
de-suelos-y-zonicacion-de-tierras-de-norte-de-santander
McLean, E. O. (1982). Soil pH and lime requirement. In A. L. Page (Ed.), Methods
of soil analysis. Part 2. Chemical and microbiological properties (2nd
ed., pp. 199–224). American Society of Agronomy, Soil Science Society
of America. https://doi.org/10.2134/agronmonogr9.2.2ed.c12
Mitsuta, A., Lourenço, K. S., Gonçalves de Oliveira, B., de Assis Costa, O. Y. N.,
Cantarella, H., & Kuramae, E. E. (2025). Soil pH determines the shift of
key microbial energy metabolic pathways associated with soil nutrient
cycle. Applied Soil Ecology, 208, 105992. https://doi.org/10.1016/j.
apsoil.2025.105992
Moya-Gutiérrez, A. J., Torres-Peña, J. A., & Contreras-Martínez, M. (2020). Site
characterization using geophysical and geotechnical prospecting. Case
study main road North Central Trunk (National Route 55) at Km 68 + 500
in the Municipality of Pamplona, North of Santander, Colombia. Revista
Boletín de Ciencias de la Tierra, 48, 30–45. https://doi.org/10.15446/rbct.
n48.85411
Pardo-Plaza, Y. J., Paolini Gómez, J. E., & Cantero-Guevara, M. E. (2019). Biomasa
microbiana y respiración basal del suelo bajo sistemas agroforestales con
cultivos de café. Revista U.D.C.A Actualidad & Divulgación Cientíca,
22(1), e1144. https://doi.org/10.31910/rudca.v22.n1.2019.1144
R Core Team. (2023). R: A language and environment for statistical computing
(Versión 4.3.1) [Software]. R Foundation for Statistical Computing.
https://www.r-project.org/
Rodríguez, Y., Osorio Torres, N. C., Castellanos, L., & Perez, Y. (2024).
Antagonistas comerciales para el manejo de enfermedades fúngicas
del cultivo de fresa (Fragaria x ananassa Duch.), en el municipio de
Pamplona, Norte de Santander. Ciencia y Tecnología Agropecuaria, 9(1),
8-15. https://doi.org/10.24054/cyta.v9i1.2952
Shi, H., Jiang, L., Tan, X., Gan, F., Xia, Y., Li, W., Xu, X., Yan, Y., Fan, Y., &
Pu, J. (2025). Changes in vegetation types alter soil respiration under the
erosion and deposition topography in karst trough valley. CATENA, 255,
109027. https://doi.org/10.1016/j.catena.2025.109027
Singh, A. P., Singh, S. K., Rai, S., & Kumar, M. (2020). Soil carbon dynamics
in relation to soil surface management and cropping system. En P. K.
Ghosh, S. K. Mahanta, D. Mandal, B. Mandal, & S. Ramakrishnan (Eds.),
Carbon management in tropical and sub-tropical terrestrial systems (pp.
181-204). Springer. https://doi.org/10.1007/978-981-13-9628-1
Villamizar Quiñonez, C., Cancino Escalante, G. O., & Cancino, S. E. (2024). Los
aspectos biofísicos de la provincia de Pamplona, Norte de Santander,
Colombia. Universidad de Pamplona. https://doi.org/10.24054/seu.78
Visconti-Moreno, E. F., & Valenzuela-Balcázar, I. G. (2019). Impacto del uso
del suelo sobre la estabilidad de agregados y su relación con el carbono
orgánico en dos pisos altitudinales en Los Andes de Colombia. Agronomía
Colombiana, 37(3), 263-273. https://doi.org/10.15446/agron.colomb.
v37n3.77601
Westman, C. J., Hytönen, J., & Wall, A. (2006). Loss-on-ignition in the
determination of pools of organic carbon in soils of forests and aorested
arable elds. Communications in Soil Science and Plant Analysis, 37(7),
1059–1075. https://doi.org/10.1080/00103620600586292
Ylagan, S., Brye, K. R., Ashworth, A. J., Owens, P. R., Smith, H., Poncet, A.
M., Sauer, T. J., Thomas, A. L., & Philipp, D. (2023). Relationships
among apparent electrical conductivity and plant and terrain data in an
agroforestry system in the Ozark Highlands. Agrosystems, Geosciences &
Environment, 6(8), e20414. https://doi.org/10.1002/agg2.20414