© The Authors, 2025, Published by the Universidad del Zulia*Corresponding author: ramirez.rrd@gmail.com
Keywords:
Fermentation
Ruminal degradability
Methane
Poultry excreta
Chemical composition, ruminal fermentation and greenhouse gases of diets with dierent
levels of poultry manure
Composición química, fermentación ruminal y gases de efecto invernadero de dietas con diferentes
niveles de pollinaza
Composição química, fermentação ruminal e gases com efeito de estufa de dietas com diferentes
níveis de dejetos de aves
Roselia Ramírez Díaz
1
René Pinto Ruiz
1
*
Adriana Camilo Aguilar
1
Luis Fernando Molina Paniagua
1
David Hernández Sánchez
2
Rev. Fac. Agron. (LUZ). 2025, 42(4): e254244
ISSN 2477-9407
DOI: https://doi.org/10.47280/RevFacAgron(LUZ).v42.n4.I
Animal production
Associate editor: Dr. Juan Vergara-López
University of Zulia, Faculty of Agronomy
Bolivarian Republic of Venezuela
1
Facultad de Ciencias Agronómicas. Universidad Autónoma
de Chiapas. Carretera Villaores-Ocozocoautla km 7,5.
Villaores, Chiapas, México. CP 30470. Teléfono: 965 65
21477.
2
Centro de ganadería. Colegio de Posgraduados, Montecillo,
Estado de México.
Received: 24-02-2025
Accepted: 27-08-2025
Published: 00-00-2025
Abstract
The use of poultry manure in tropical cattle farming is common
and although many aspects of this resource have been studied, it
is important to generate information on the eects of including it
in comprehensive diets. The objective of this work was to know
the chemical, fermentative, greenhouse gas (GHG) production
and costs characteristics of diets that include poultry manure.
Three diets (treatments) made with local ingredients (30, 15 and
0 % poultry manure) were evaluated. For each treatment, crude
protein values and ruminal degradation, ash, ber fractions,
fermentation kinetics and fractions, GHG production and cost per
kilogram were estimated. The results, except costs, were analyzed
using the GLM procedure. Protein and ber values were similar
(P>0.05) in all treatments while ash was higher (P<0.05) in those
containing manure. The values of maximum volume (Vm), medium
fermentation (MF) and total fermentation (TF) were similar
(P>0.05) in all treatments. In relation to GHG, the highest methane
values occurred in T3 (P<0.05) and those diets that included poultry
manure were up to 20 % more economical. The inclusion of poultry
manure in diets achieves protein contributions to the rumen similar
to those achieved with diets based on which this byproduct was
not included, as well as a greater contribution of ash without
aecting ruminal fermentation activity, but it does reduce methane
production and diet costs.
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rev. Fac. Agron. (LUZ). 2025, 42(4): e254244 October-December. ISSN 2477-9409.2-6 |
Resumen
El uso de pollinaza en la ganadería bovina tropical es común
y aunque se han estudiado muchos aspectos sobre este recurso, es
importante generar información sobre los efectos al incluirla en dietas
integrales. El objetivo de este trabajo fue conocer las características
químicas, fermentativas, de producción de gases de efecto invernadero
(GEI) y costos de dietas con inclusión de pollinaza. Se evaluaron tres
dietas (tratamientos) elaboradas con ingredientes locales (30, 15 y 0
% de pollinaza). A cada tratamiento se le estimó valores de proteína
cruda y su degradación ruminal, cenizas, fracciones de bra, cinética
y fracciones de fermentación, la producción de GEI y el costo por
kilogramo. Los resultados, excepto costos, se analizaron utilizando
el procedimiento GLM. Los valores de proteína y bras fueron
similares (P>0,05) en todos los tratamientos mientras que la ceniza
fue mayor (P<0,05) en los que contenían pollinaza. Los valores de
volumen máximo (Vm), fermentación media (MF) y fermentación
total (TF) fueron similares (P>0,05) en todos los tratamientos. En
relación a GEI, los valores más altos de metano se produjeron en el
T3 (P<0,05) y aquellas dietas que incluyeron pollinaza fueron hasta
un 20 % más económicas. La inclusión de pollinaza en dietas logra
aportes proteicos en rumen similares a los alcanzados con dietas
basadas en las que no se incluyó este subproducto así como un mayor
aporte de cenizas sin afectar la actividad fermentativa ruminal, pero
sí disminuyendo la producción de metano y los costos de la dieta.
Palabras clave: fermentación, degradabilidad ruminal, metano,
excretas avícolas
Resumo
A utilização de estrume de galinha na pecuária tropical é comum
e embora muitos aspetos deste recurso tenham sido estudados, é
importante gerar informação sobre os efeitos da sua inclusão em dietas
abrangentes. O objetivo deste trabalho foi conhecer as características
químicas, fermentativas, de produção e custos de gases com efeito de
estufa (GEE) de dietas que incluem cama de galinha. Foram avaliadas
três dietas (tratamentos) elaboradas com ingredientes locais (30, 15
e 0 % de estrume de galinha). Para cada tratamento foram estimados
os valores de proteína bruta e degradação ruminal, cinzas, frações de
bra, cinética e frações de fermentação, produção de GEE e custo
por quilograma. Os resultados, exceto os custos, foram analisados
utilizando o procedimento GLM. Os valores de proteína e bra foram
semelhantes (P>0,05) em todos os tratamentos enquanto as cinzas
foram superiores (P<0,05) nos que continham estrume. Os valores
de volume máximo (Vm), fermentação média (MF) e fermentação
total (TF) foram semelhantes (P>0,05) em todos os tratamentos. Em
relação ao GEE, os valores mais elevados de metano ocorreram no
T3 (P<0,05) e aquelas dietas que incluíam cama de galinha foram
até 20 % mais económicas. A inclusão de estrume de aves nas dietas
proporciona contribuições proteicas para o rúmen semelhantes às
obtidas com dietas em que este subproduto não foi incluído, para
além de uma maior contribuição de cinzas sem afectar a actividade
de fermentação ruminal, mas reduz a produção de metano e os custos
da dieta.
Palabras-chave: fermentação, degradabilidade ruminal, metano,
excrementos de aves.
Introduction
In many regions of Mexico’s dry tropics, poultry manure has
been a widely used ingredient in livestock production, mainly for
cattle. This co-product is used practically throughout the year, but
its use becomes more important during the dry season, and studies
reporting on its quality and use in ruminants indicate its importance
and relevance compared to other types of excrement (Orlando and
Cornejo, 2024; Vivas et al., 2023; Pinto et al., 2019). Similarly,
various studies have measured the eect of poultry manure on the
quality of meat (Chacón et al., 2019) and milk (Citalan et al., 2016)
from animals fed with it. This means that poultry manure continues
to be used in tropical livestock systems, but much of its use is still
empirical and based on lack of knowledge.
Although aspects related to its chemical composition and
ruminal degradation, processes to improve its biological quality,
and impact on bovine animal protein production have been studied,
it is still necessary to generate information on the advantages that
poultry manure, when included in complete diets, can achieve and
that have not been disseminated, which could manifest themselves
in economic, animal utilisation, and environmental terms when using
a potentially polluting resource (Pinos et al., 2012) and could be
equivalent to those achieved in diets supplemented with expensive
and scarce ingredients, especially considering that the current increase
in the price of many ingredients has led to higher feed costs and that
ruminal fermentation activity could be aected by the type of diet
used (Arjmand et al., 2022).
The objective of this study was to determine whether the inclusion
of poultry manure in cattle diets oers the same opportunities in
terms of chemical and fermentation characteristics, greenhouse gas
production and costs as a diet without it.
Materials and methods
Characteristics of the study area
The analyses were carried out at the Animal Nutrition Laboratory,
Faculty of Agricultural Sciences of the Autonomous University of
Chiapas, located in the municipality of Villaores, Chiapas, Mexico.
This region has a climate classied as Aw, with an average rainfall
of 1,100 mm and an average annual temperature of 25 °C (National
Institute of Statistics, Geography and Informatics, 2020).
Treatments evaluated
Three diets (treatments) were evaluated, prepared with local
ingredients commonly used in diets for nishing cattle (table 1). In
the case of poultry manure, it was dried in the open air, ground with
a hammer mill and sieved to remove feathers and residual lumps, and
then incorporated into the experimental diets.
Table 1. Diets evaluated (% as-fed basis).
Dietary component T1 T2 T3
Poultry manure 30 15
Corn grain 50 56 56
Ground African star grass
(Cynodon nlemfuensis Vanderyst)
20 28 25
Urea 0 1 0
Dried distillery grains 0 0 6
Wheat bran 0 0 10
Soybean meal 0 0 3
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Ramírez et al. Rev. Fac. Agron. (LUZ). 2025, 42(4): e2542443-6 |
Diet cost
To determine the cost per kilogram (as oered), the individual
price of each ingredient on the local market was considered, along
with its percentage inclusion in each diet, taking into account prices
for the year 2025.
Data analysis
The results of each variable measured, except costs, were analysed
using the GLM procedure of the SAS statistical package version 9.1
(2004) using a completely randomised experimental design. The
means were compared using Tukey’s test (P<0.05).
Results and discussion
Chemical composition
The DM and CP values found were similar (P>0.05) in all
treatments. The NDF values diered between treatments, with those
with higher poultry manure content being higher (P<0.05). The OM
values diered between treatments (P<0.05), with the treatment
without poultry manure having the highest OM content. The NDF
and ADF values were similar (P>0.05) between treatments. Finally,
with regard to CPDeg, T2 had the highest value and T3 the lowest
(P<0.05) (table 2).
Table 2. Chemical and crude protein degradation characteristics
of diets with dierent levels of poultry manure (Mean ±
Standard deviation).
Nutrient T1 T2 T3
DM 87.76 ± 0.18
a
88.96 ± 0.15
a
88.45 ± 0.12
a
CP 11.27 ± 0.88
a
10.87 ± 0.31
a
10.55 ± 0.31
a
CA 7.09 ± 0.09
a
5.27 ± 0.02
b
4.15 ± 0.05
c
OM 92.90 ± 0.09
c
94.73 ± 0.02
b
95.85 ± 0.05
a
NDF 32.10 ± 0.38
a
31.20 ± 0.41
a
30.95 ± 0.44
a
ADF 21.95 ± 0.23
a
21.45 ± 0.27
a
18.89 ± 0.32
a
CPDeg (%) 90.81 ± 0.72
ab
92.03 ± 0.63
a
90.46 ± 0.03
b
a, b, c
Means with dierent letters in the same row are statistically dierent (P<0.05). DM: Dry
matter (%). CP: Crude protein (%). CA: Crude ash (%). OM: Organic matter (%). NDF: Neutral
detergent bre (%). ADF: Acid detergent bre (%). CPDeg= Crude protein degradation at 24
h (%). T1: Diet with 30 % poultry manure. T2: Diet with 15 % poultry manure. T3: Diet with
0 % poultry manure.
Considering the CP and CPDeg values found, in all cases, any of
the treatments provides the rumen-degradable protein necessary to
meet the requirements for ruminal microbes, which are considered
to be around 8.0 % (Detman et al., 2014). Similarly, calculating it
as proposed by Mendoza et al. (2022), the treatments do not provide
a signicant proportion of passage protein that could be important
for the animal’s production requirements as it is absorbed in the
duodenum (1.03, 0.87 and 0.92 %, respectively) and could impact the
production of animals on pastures with average production (Oliveira
de Souza et al., 2021). In this case, diets that include poultry manure
can be considered as those that provide most of their protein as rumen-
degradable, which is related to a higher concentration of ammonium
present in the rumen and useful in microbial protein synthesis
(Elizondo-Salazar, 2020), which could contribute signicantly
to the total supply of amino acids to the small intestine and to the
modication of the amino acid prole of the duodenum (Castillo and
López, 2019).
Variables evaluated
Chemical composition
Each treatment was analysed in triplicate to determine its dry
matter (DM), organic matter (OM), ash (ASH) and crude protein
(CP) content according to AOAC (1990 a y b). Neutral detergent bre
(NDF) and acid detergent bre (ADF) were estimated according to
the technique described by Van Soest (1991).
In vitro fermentation and degradation
The technique described by Menke et al. (1979) was used. For
each treatment evaluated, 12 vials (bottles) of 125 mL were used,
in which 500 mg of the corresponding treatment was placed. Then,
under a continuous ow of carbon dioxide (CO
2
), 90 mL of diluted
bovine ruminal inoculum (1:10) was added to each vial. The reduced
and added mineral solution contained KH
2
PO
4
(0.45 g.L
-1
), NaCO
3
(0.6 g.L
-1
), (NH
4
)
2
SO
4
(0.45 g.L
-1
), NaCl (0.9 g.L
-1
), MnSO
4
(0.18 g.L
-1
),
CaCl
2
(0.12 g.L
-1
), L-cysteine (0.25 g.L
-1
) and Na
2
S (0.25 g.L
-1
). The
lled vials were sealed with rubber stoppers and aluminium rings and
incubated at 39 °C. Three vials without substrate were included as
controls.
The fermentation parameters were determined by measuring the
gas pressure with a pressure gauge at 2, 4, 6, 8, 10, 12, 16, 20, 22, 24,
28, 32, 34, 36, 40, 48, 60 and 72 hours of incubation. The pressure
values (kg.cm²) were converted to gas volume (mL.g
-1
of substrate)
using a linear regression equation (volume = pressure/0.019 with
= 0.98), which was obtained by relating the pressure (P) generated
by known volumes of air injected into the asks maintained under
the same handling conditions (De la Rosa-Zariñana et al., 2023).
The parameters of gas production kinetics: maximum volume (Vm),
rate (S) and lag phase (L) were estimated using the logistic model
V=Vm/1+e (
2-4*S (T-L)
) proposed by Schoeld and Pell (1995) using
SAS version 9.1 (2004).
Fermentation fractions were also estimated through the fractional
volume (Vf) of fermentation gas at time intervals of 0 to 8 (Vf
0-8
), 8 to 24
(Vf
8-24
) and 24 to 48 (Vf
24-48
) hours of incubation, transforming them into
fractions (g.kg
-1
DM) of fast (RF), medium (MF) and slow (SF) fermentation
using the regression equations; FR (g.kg
-1
) = Vf
0-8
/0.4266 (R² = 0.9441), MF
(g.kg
-1
) = Vf
8-24
/0.6152 (R² = 0.998) and SF (g.kg
-1
) = Vf
24-48
/0.3453 (R² =
0.9653) (Ramírez et al., 2020). RF, MF and SL refer to sugars, starch and
structural components (cellulose and hemicellulose), respectively.
Crude protein degradation (CPDeg) was calculated as the ratio
between the initial incubated material and the residue obtained, which
was analysed for its crude protein content.
In vitro estimation of greenhouse gases
To determine CH₄ and CO₂, a third series of fermentation was
carried out using a syringe (50 mL) to measure gas production at
6, 12, 18, and 24 hours of incubation. To determine methane, the
methodology described by Ramírez et al. (2023), which is based
on the separation of CO₂ from the fermentation gas using a trap
containing 40 mL of potassium hydroxide (KOH) at a concentration
of one molar (56.10 g of KOH per litre of distilled water), following
the original procedure of Bartha and Pramer (1965). The residual
volume was considered as mL of CH₄+minor gases and adjusted
as theoretical methane (CH₄) by multiplying each value by 0.7714
according to the proportion of methane determined in the rumen gas
sample (Zhong, 2016). Using the above values, the total gas produced
during fermentation (VTGF; mL.g
-1
DM) and methane (%) were
estimated, obtaining the percentage of CO
2
by dierence.
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rev. Fac. Agron. (LUZ). 2025, 42(4): e254244 October-December. ISSN 2477-9409.4-6 |
Poultry manure has been recognised as a co-product with
relatively high ash levels of around 15-18 % (Pinto-Ruiz et al.,
2019), which explains the higher ash values in diets with poultry
manure compared to diets without poultry manure and which may be
important in terms of a greater contribution to the animal’s mineral
requirements when this co-product is part of the diet. The NDF values
obtained in diets with poultry manure were similar to those reported
by Bórquez-Gastelúm et al. (2018), who evaluated diets made with
silage poultry manure together with corn stover, corn grain, wheat
bran, soybean meal, and sh meal, nding an NDF content of 30.6
%. Likewise, when compared to other food sources, the NDF and
ADF values are similar to those recorded for tree species (34.64 and
28.99 %, respectively), but lower than those reported for grasses such
as Cenchrus ciliaris (73.71 and 49.62 %, respectively), according to
Bernal et al. (2022).
In vitro fermentation and degradation
In vitro gas production is a simple technique that helps
characterise the kinetics and fermentation fractions of feed substrates
(Aragadvay-Yungán et al., 2022), which could explain the eect of
diet composition on ruminal fermentation activity (Cui et al., 2019),
an aspect of interest in dening strategies for the optimal use of
ingredients, such as poultry manure. Table 3 shows the results of the
fermentation kinetics of the treatments evaluated in this study. For L
(h), similarities (P>0.05) were found in T1 and T3. The value of S (h
-1
)
found was equal (P>0.05) between T1 and T2 and dierent for T3
(P<0.05). However, for the Vm values, these were similar (P>0.05) in
all the treatments evaluated.
Table 3. Fermentation parameters of diets with dierent levels of
poultry manure (Mean ± Standard deviation).
Parameter T1 T2 T3
L (h) 7.34 ± 0.35
b
8.72 ± 0.83
a
6.95 ± 1.25
b
S (h
-1
) 0.038 ± 0.00055
a
0.038 ± 0.00285
a
0.033 ± 0.00358
b
Vm (mL.g
-1
MS) 375.9 ± 17.1 367.49 ± 27.97ª 396.28 ± 35.91
a
a, b
Means with dierent letters in the same row are statistically dierent (P<0.05). L= Lag
phase (h). S= Gas production rate (h
-1
). Vm= Maximum gas production volume (mL.g
-1
DM).
T1: Diet with 30 % poultry manure. T2: Diet with 15 % poultry manure. T3: Diet with 0 %
poultry manure.
The higher L value found in T2 (15 % poultry manure) indicates
that the adaptation of microbes to ruminal conditions and, therefore,
the degree of colonisation of the substrate takes longer. However,
T1, the diet that also contained poultry manure (30 %), was similar
(P>0.05) in its L value to the diet that did not contain it (T3). These
dierences could be explained by the lower soluble and readily
available fraction (FR) found in the diet corresponding to T2 (table
4), which is a result of its composition.
On the other hand, the high S values for the diets with poultry
manure (T1 and T2) indicate that these treatments were fermented
more quickly, an activity that could be associated with a more rapid
multiplication of microbes and that, at this rate, they consume the
nutrients in the environment provided by the diets compared to the
diet without poultry manure (T3). With regard to the fermentation
potential represented by the metabolic state of ruminal microbes
(Vm), although T3, the treatment without poultry manure, had the
highest Vm value due to its formulation with a higher proportion of
concentrated ingredients, statistically it was similar (P>0.05) to those
formulated with poultry manure.
The L values of the diets evaluated in this study were higher
than those reported by De la Rosa et al. (2023) for diets for fattening
sheep with dierent protein and energy levels (4.24 h) but similar
to those reported for P. maximum (6.75 h) (Díaz et al., 2023). The
Vm values were lower than those obtained in diets with grains or high
in concentrates (462 to 493 mL.g
−1
DM) reported by Sánchez et al.
(2019) and higher than those produced by sorghum silage and pastures
(294.5 and 194.45 mL.g
−1
DM, respectively) (Villalba et al., 2025;
Amparo-Holguín et al., 2021). On the other hand, it is known that the
gas produced during in vitro ruminal fermentation depends, but not
exclusively, on the concentration of highly fermentable carbohydrates
and the components of the feed cell wall (Villalba et al., 2021), so
table 4 shows the results of the fermentation fractions of the treatments
evaluated. For the FM and FT values found, similarities were found
in all the treatments evaluated (P>0.05). For RF, T2 was statistically
dierent (P<0.05) from T3. For SF, T3 had the highest values and was
signicantly dierent (P<0.05) from the other treatments.
Table 4. Fermentation fractions of diets with dierent levels of
poultry manure (g.kg
−1
) (Mean ± Standard deviation).
Treatment RF MF SF TF
T1 100.44 ± 7.22
ab
330.27 ± 15.00
a
350.00 ± 21.49
b
780.71 ± 36.88ª
T2 70.62 ± 23.25
b
319.22 ± 18.53
a
373.98 ± 30.39
b
763.82 ± 60.20ª
T3 118.94 ± 29.95
a
298.97 ± 54.98
a
408.88 ± 57.90
a
826.79 ± 76.45
a
a, b
Means with dierent letters in the same column are statistically dierent (P<0.05). RF:
Rapid fermentation fractions. MF: Medium fermentation fractions. SF: Slow fermentation
fractions. TF: Total fermentation. T1: Diet with 30 % poultry manure. T2: Diet with 15 %
poultry manure. T3: Diet with 0 % poultry manure.
The lower RF value (P<0.05) found in T2 and the higher SF value
(P<0.05) in T3 could be associated with the ingredients considered in
each of the diets. In the case of T2, this could be associated with the lack
of soluble carbohydrates, and in the case of T3, with higher structural
carbohydrates, specically the dierence in the fractions of this type of
carbohydrate (more cellulose) (Ramírez et al., 2020). With regard to
TF, it can be seen that although the treatment without poultry manure
(T3) produced the highest gas production, due to the greater amount
of concentrated ingredients in its formulation (Miranda-Romero et al.,
2020), this value was statistically similar (P>0.05) to that obtained in
the diets with poultry manure.
The values found in this study for RF and MF in all treatments are
similar to the ranges published by De la Rosa et al. (2023) for diets
for pen-raised sheep with dierent protein and energy levels. All of
the above rearms the importance that, although ruminal fermentation
activity could be aected by the type of diet used (Arjmand et al.,
2022), the use of poultry manure does not cause signicant changes in
this activity compared to diets that do not contain this ingredient.
In vitro estimation of greenhouse gases
Table 5 shows that, in relation to polluting gases, the highest values
occurred in T3 (P<0.05).
Treatments with poultry manure produced lower amounts of
methane, which may be related to a higher amount of ammonia present
in the rumen and contributed by the poultry manure and produced
during the anaerobic digestion process. It has been shown that ammonia
inhibits gas production. It is also known that there is a high production
of volatile fatty acids, which add to the inhibitory eect of nitrogen
(Rendón-Correa et al., 2022). The results obtained in T1 and T2 are
within the ranges obtained by Pereyra et al. (2022) with diets that also
contained poultry manure in their composition (13.5 to 20 mL.g
-1
DM).
Cost of feed
Table 6 shows the cost per kilogram of feed as oered. It can be
seen that feeds containing poultry manure can be up to 20 % cheaper
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Ramírez et al. Rev. Fac. Agron. (LUZ). 2025, 42(4): e2542445-6 |
(T1), a key factor in the economics of livestock farming, as feed costs
can account for up to 80 % of production costs.
Table 5. Greenhouse gas estimation of diets with dierent levels
of poultry manure.
Treatment TV ( mL.g
-1
DM) CO
2
V
(mL.g
-1
DM) CH
4 theoretical
(mL.g
-1
DM)
T1
161.648
b
141.269
b
15.722
c
T2
160.539
b
134.294
b
20.245
b
T3 187.922
a
152.283
a
27.492
a
a, b, c
Means with dierent letters in the same column are statistically dierent (P<0.05). TV:
Total volume (mL.g
-1
DM). CO2V: Residual volume (mL.g
-1
DM). CH4: Methane (mL.g
-1
DM). T1: Diet with 30 % poultry manure. T2: Diet with 15 % poultry manure. T3: Diet with
0 % poultry manure.
Table 6. Cost per kilogram of diets with dierent levels of poultry
manure (as oered).
Tratamiento $ en BTO $ unidad Proteína
T1 5,75 58,11
T2 6,17 63,75
T3 7,17 76,83
Cost according to January 2025 prices. T1: Diet with 30% poultry manure. T2: Diet with 15%
poultry manure. T3: Diet with 0% poultry manure, BTO: As oered.
Conclusions
The inclusion of poultry manure in diets can achieve rumen
protein intakes similar to those achieved with diets that did not include
this by-product, as well as a higher ash intake, all without aecting
ruminal fermentation activity but reducing methane production and
diet and nutrient unit costs. Although these results were obtained
under in vitro conditions, it would be interesting to corroborate them
through in vivo trials.
Literature cited
Amparo-Holguín, V., Cuchillo-Hilario, M., Mazabel, J., Quintero, S., Martens, S.
& Mora-Delgado, J. (2021). Producción de metano in vitro y parámetros
fermentativos de mezclas de ensilado de girasol silvestre y pasto
elefante, inoculadas o no con cepas de bacterias ácido-lácticas epítas.
Revista Mexicana de Ciencias Pecuarias, 12(3), 789-810, https://doi.
org/10.22319/rmcp.v12i3.5577
Aragadvay-Yungán, R., Rodríguez, M. B., Basantes-Basantes, E. & Cando, Á.
C. (2022). Valor nutricional, producción de gas in vitro y degradación
ruminal in situ de ensilaje de maíz enriquecido con Saccharomyces
cerevisiae. Revista de Investigaciones Veterinarias del Perú, 33(1),
e20890, https://doi.org/10.15381/rivep.v33i1.20890
Arjmand, M., Kiani, A., Azizi, A., Fadayifar, A., Azarfar, A. & Ponnampalam,
E. N. (2022). Eects of dietary concentrate level and feeding length on
nutrient digestibility, rumen hydrolytic enzymes activity, intermediary
metabolites, and feeding behavior in growing fat-tailed lambs: Iranian
feedlot system. Small Ruminant Research, 217, 106832. https://doi.
org/10.1016/j.smallrumres.2022.106832
Association of Oícial Agricultural Chemist (A. O. A. C.). (1995). Ocial
methods of Analysis of AOAC International. Arlington. Association of
Ocial Analytical Chemists.
Bartha, R. & Pramer, D. E. (1965). Features of ask and method for measuring
the persistence and biological eects of pesticides in soil. Soil Science,
100(1), 68-70. https://journals.lww.com/soilsci/citation/1965/07000/
features_of_a_ask_and_method_for_measuring_the.11.aspx
Bernal, H., Perrusquía, V. M., Vásquez, N. C. & González, H. (2022). Determinación
de la producción de gas in vitro, contenido de nutrientes y energía
metabolizable de forrajes y suplementos para ovinos y caprinos. Ciencia
UANL, 25(115), 41-47. https://doi.org/10.29105/cienciauanl25.115-1
Bórquez-Gastelúm, J. L., Trujillo-Gutiérrez, D., Domínguez-Vara, I. A., Pinos-
Rodríguez, J. M. & Cobos-Peralta, M. A. (2018). Rendimiento de
corderos en crecimiento alimentados con ensilados de pollinaza, cerdaza
y urea con melaza de caña o un subproducto de panadería. Agrociencia,
52(3), 333-346. https://www.scielo.org.mx/scielo.php?pid=S1405-
31952018000300333&script=sci_arttext
Castillo, E. & Domínguez, M, G. (2019). Factores que afectan la composición
microbiana ruminal y métodos para determinar el rendimiento de la
proteína microbiana. Revisión. Revista Mexicana de Ciencias Pecuarias,
10(1), 120-148, http://dx.doi.org/10.22319/rmcp.v10i1.4547
Chacón, A., Pinto, R., Ramírez, E., Guevara, F. & Ramírez, R. (2019).
Comportamiento productivo y calidad de la carne de corderos
alimentados con pollinaza. Revista Cientíca FVC-LUZ, 29(1), 43-
54, https://produccioncienticaluz.org/index.php/cientica/article/
view/29622/30421.
Citalan, L., Ramos, A., Salinas, R., Bucio, A., Osorio, M., Herrera, J. G. &
Orantes, M. (2016). Análisis sensorial de leche de vacas suplementadas
con un alimento fermentado a base de pollinaza. Ecosistemas y Recursos
Agropecuarios, 3(8), 181-191, https://www.scielo.org.mx/scielo.
php?script=sci_arttext&pid=S2007-90282016000200181.
Cui, K., Qi, M., Wang, S., Diao, Q. & Zhang, N. (2019). Dietary energy and
protein levels inuenced the growth performance, ruminal morphology
and fermentation and microbial diversity of lambs. Scientic Reports, 9,
16612, https://doi.org/10.1038/s41598-019-53279-y.
De la Rosa, A E., Miranda, L. A., Martínez, P. A., Vargas, L. M. & Elmasry, A.
(2023). Nivel de proteína y energía en la fermentación in vitro de dietas
para borregos, Ecosistemas y Recursos Agropecuarios, 10(2), 1-11.
https://doi.org/10.19136/era.a10n2.3545.
Díaz, V. F., Sánchez, A., Albores, S., Lara, L. A., Valencia, S., Ku-Vera, J. C. &
Alayon, J. A. (2023). Valoración nutricional y fermentación in vitro de
mezclas de follaje de árboles con harina de yuca en dietas para borregos.
Acta Universitaria, 33,1-18, https://doi.org/10.15174/au.2023,3558.
Elizondo-Salazar, J. A. 2020. Estimación del suministro de proteína metabolizable
en una ración para ganado de leche. Nutrición Animal Tropical, 14(2),
85-100. https://doi.org:10.15517/nat.v14i2.44256.
Gobierno de México. (2025). Información Estadística Climatológica del Servicio
Meteorológico Nacional. https://smn.conagua.gob.mx/es/climatologia/
informacion-climatologica/informacion-estadistica-climatologica
Mendoza, G. D., Hernández, P. A., Plata, F. X., Martínez, J. A., Arcos, J. L. &
Lee, H. A. (2022). Nutrición Animal Cuantitativa. México (1ª, Edición),
Universidad Autónoma Metropolitana. http://cbs1.xoc.uam.mx/
publicaciones_1/docs/Libro_digital_Nutricion_Animal_Cuantitativa.pdf
Menke, K. H., Raab. L., Salewski, A., Steingass, H., Fritz, D. & Schneider, W.
(1979). Estimation of the digestibility and metabolizable energy content
of ruminant feedingstu fron the gas production when they are incubated
with rumen licuor in vitro. The Journal of Agricultural Science, 93, 217-
222.
Miranda-Romero, L. A., Tirado-González, D. N., Tirado-Estrada, G., Améndola-
Massiotti, R., Sandoval-González, L., Ramírez-Valverde, R. & Salem, A.
Z. (2020). Quantifying non-brous carbohydrates, acid detergent ber and
cellulose of forage through an in vitro gas production technique. Journal
of the Science of Food and Agriculture, 100(7), 3099-3110, https://doi.
org/10.1002/jsfa.10342
Oliveira de Souza, S., Rodrigues, R., Ferreira F., Gomes, A. P., Santos, M. Paiva,
R., Lima, R., Ribeiro, T., Dallapicola, G., Batista, A., Santos, M. &
Vieira, L. (2021). Manejo nutricional de novillos criados en pastoreo y
en corral: efectos en el consumo, digestibilidad, rendimiento y viabilidad
económica. Revista Mexicana de Ciencias Pecuarias, 12(1), 105-119.
https://doi.org/10.22319/rmcp.v12i1.5076.
Orlando, F. & Cornejo, R. (2024). Calidad nutricional de raciones alimenticias
empleando la pollinaza en animales poligástricos. PENTACIENCIAS,
6(1), 425-436, https://doi.org/10.59169/pentaciencias.v6i1.1013
Pereyra, C., Pinto, R., Ramírez, R., Hernández, D., Guevara, F. & Venegas, J.
(2022). Estimación in vitro de metano y dióxido de carbono en dietas para
engorda de bovinos. Archivos de Zootecnia, 71 (276), 216-222, https://
doi.org/10.21071/az.v71i276.5685.
Pinos-Rodríguez, J. M., García-López, J. C., Peña-Avelino, L., Rendón-Huerta,
J. A. González-González, C. & Tristán-Patiño, F. (2012). Impactos y
regulaciones ambientales del estiércol generado por los sistemas ganaderos
de algunos países de América. Agrociencia, 46(4), 359-370, https://
agrociencia-colpos.org/index.php/agrociencia/article/view/960/960
Pinto, R., Ramírez, R., Guevara, F., Raj, D., Venegas, J. A., Miranda, L. & Chacón,
A. (2019). Análisis bromatológico y fermentación ruminal in vitro de
excretas de origen animal para uso en la alimentación de rumiantes.
Tropical and Subtropical Agroecosystems, 22(1), 107-113, http://dx.doi.
org/10.56369/tsaes.2738
Ramírez, R., Pinto, R., Medina, F. J. & Guevara, F. (2020). Eect of inoculants and
additives on fractions of ruminal fermentation and in vitro degradation
in sorghum silage (Sorghum sp). CienciaUAT, 15, 172-179, https://doi.
org/10.29059/cienciauat.v15i1.1332
Ramírez-Díaz, R., Pinto-Ruiz, R., Miranda-Romero, L. A., La, O., Arias, M. A.,
Hernández-Sánchez, D., & Raj-Aryal, D. (2023). Methane prediction
of two tree fruits by In vitro gas and gas chromatography. Ecosistemas
y recursos agropecuarios, 10(3), e3602. https://doi.org/10.19136/era.
a10n3.3602.
Rendón-Correa, E., Rosero-Noguera, R. & Posada-Ochoa, S. L. (2022). Efecto del
nitrato protegido sobre las emisiones de metano, utilización de la energía,
y balance de nitrógeno en novillos Brangus. Información tecnológica,
33(6), 113-124, http://dx.doi.org/10.4067/S0718-07642022000600113
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rev. Fac. Agron. (LUZ). 2025, 42(4): e254244 October-December. ISSN 2477-9409.6-6 |
Sánchez, N., Mendoza, G., Martínez, J., Hernández, P., Miranda, L. & Villarreal,
E. B. O. (2019). Efecto de bloques con propionato de calcio sobre
respuestas productivas en corderos y GEI in vitro. Revista MVZ Córdoba,
24(2), 7188-7192, https://doi.org/10.21897/rmvz.1229.
SAS. (2004). Users Guide: Statistics, https://support.sas.com/documentation/
onlinedoc/91pdf/sasdoc_91/stat_ug_7313.pdf
Schoeld, P. & Pell, A. N. (1995). Measurement and kinetic analysis of
the neutral detergent-soluble carbohydrate fraction of legumes and
grasses. Journal of Animal Science, 73(11), 3455–3463, https://doi.
org/10.2527/1995.73113455x
Van Soest, P. J., Robertson, J. B. & Lewis, B. A. (1991). Methods for dietary
bre, neutral detergent bre, and nonstarch polysaccharides in relation to
animal nutrition, Journal of Dairy Science. 74(10), 3583–3597, https://
doi.org/10.3168/jds.S0022-0302(91)78551-2
Villalba, D. K., Holguín, V. A. & Mora-Delgado, J. (2025). Dinámica microbiana
in vitro de un ensilaje de Sorghum saccharatum enriquecido con y sin
inóculos de Lactobacilli sp. Nutrición Animal Tropical, 19(1), 125-157,
https://doi.org/10.15517/1qrw6g94
Villalba, J, J., Ates, S. & MacAdam, J. W. (2021). Non-ber Carbohydrates in
Forages and Their Inuence on Beef Production Systems. Frontiers in
Sustainable Food Systems, 5, https://doi.org/10.3389/fsufs.2021.566338
Vivas, J., Vera, J. N., Tacuri, E. & Mejía, K. (2023). Efecto de la pollinaza
como nitrógeno no proteico en la ganancia de peso de toros de engorda.
RECIAMUC, 7(1), 855-864, https://doi.org/10.26820/reciamuc/7.(1).
enero.2023.855-864
Zhong, R. Z., Fang, Y., Sun, H. X., Wang, M. & Dao-Wei, Z. (2016). Rumen
methane output and fermentation characteristics of gramineous forage
and leguminous forage at diering harvest dates determined using an in
vitro gas production technique. Journal of Integrative Agriculture, 15(2),
414–423, https://doi.org/10.1016/S2095-3119(15)61036-X