
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Reyes-Perez et al. Rev. Fac. Agron. (LUZ). 2025, 42(4): e254243
5-6 |
(2023), chitosan treatments act as an elicitor of secondary metabolism 
in plants in general, while increases in phenol content are largely due 
to the fact that the synthesis of this compound is increased by the 
eect of chitosan application (Sanwam et al., 2023).
In general, it has been noted that the application of nanotechnology 
in the agricultural sector (Tejeda-Villagómez, et al., 2023) is a 
promising tool. This science is driving the development of a range of 
innovative applications and products for the benet of agriculture, as 
well as its use in the production of medicinal plants (Sun et al., 2023). 
In the case of Si NPs, these appear to be an excellent alternative for 
reducing the use of agrochemicals, as well as being eective systems 
for administering nutrients and chemical compounds to plants and 
crops of agricultural interest.
Furthermore, the integration of nanotechnology into agriculture 
represents  a  signicant  advance  in  improving  the  eciency  and 
sustainability of food production. This advance not only contributes 
to global food security, but also promotes more sustainable and 
environmentally friendly agricultural practices (Navarro-López et 
al., 2025).
Conclusions
The  foliar  application  of  Si-NPs,  enriched  with  dierent 
microelements in a chitosan gel matrix, promoted greater plant growth at 
the highest concentration (2,000 mg.L
-1
) and increased the nutraceutical 
quality of cucumber fruits by increasing the phytochemical compounds 
of antioxidants, avonoids, phenols and total soluble solids.
Literature cited
Allard, S.M., Ottesen, A.R., and Micallef, S.A. 2020. Rain induces temporary 
shifts in epiphytic bacterial communities of cucumber and tomato fruit. 
Scientic Reports, 10(1), 1765. DOI: https://doi.org/10.1038/s41598-020-
58671-7.
Canuto,  L.,  Mendes,  G.A.,  de  Oliveiram,  M., Araújo,  J.L.,  Trotsk,  S.,  Santos, 
M.D., Ribeiro, V.G., da Silva, J., Lopes, C., y Queiroga, F. 2021. O 
papel do silício nas plantas. Research, Society and Development,  10, 7: 
e3810716247. DOI: https://dx.doi.org/10.33448/rsd-v10i7.16247.
Cázarez-Flores, L.L., Angulo-Castro, A. Vega-Gutiérrez, T.A., Ayala-Tafoya, F., 
and Aguilar-Quiñonez, J.A. 2023. Producción de tomate en respuesta a 
dosis de silicio. Ecosistemas  y  Recursos  Agropecuarios  10(3): e3851. 
DOI: 10.19136/era.a10n3.3851.
Chagas, Y., Herrera, O., y Pereira, E. 2022. Uso da quitosana na agricultura: uma 
revisão  com  ênfase  na  aplicação  em  sementes.  Research,  Society  and 
Development,  11(2), e39911225782. DOI: https://dx.doi.org/10.33448/
rsd-v11i2.25782.
Erreyes, B., Montoya, J., y Luna-Romero, E. (2023). Rendimiento del cultivo de 
pepino (Cucumis sativus L.) bajo condiciones de mulch plástico, Ecuador. 
Revista Cientíca Agroecosistemas, 11(1), 44-51. https://aes.ucf.edu.cu/
index.php/aes/index.
Farouk S (2023). Role of biostimulants in plant’s life cycle. In Biostimulants in 
Alleviation of Metal Toxicity in Plants (pp. 75-106). Academic  Press. 
DOI: 10.1016/B978-0-323-99600-6.00010-4.
Galindo-Guzmán AP, Fortis-Hernández M, De La Rosa-Reta CV, Zermeño-
González H, Galindo-Guzmán L (2022). Síntesis química de 
nanopartículas de óxido de zinc y su evaluación en plántulas de Lactuca 
sativa. Revista Mexicana de Ciencias Agrícolas 13: 299-308. https://doi.
org/10.29312/remexca.v13i28.3284.
Guillén, R., Zuñiga, L., Ojeda, L., Rivas, T., Trejo, R., y Preciado, P. 2022. Efecto 
de  la  nanobioforticación  con  hierro  en  el  rendimiento  y  compuestos 
bioactivos en pepino. Revista Mexicana de Ciencias Agrícolas,  13(28), 
173-184. https://doi.org/10.29312/remexca.v13i28.3272.
Henriquez, C., Aliaga, C., and Lissi, E. 2002. Formation and decay of the ABTS 
derived radical cation: A comparison of dierent preparation procedures. 
International Journal of Chemical Kinetics 34(12):659-665. https://doi.
org/10.1002/kin.10094.
Insanu,  M.,  Azkia-Zahra,  A,  Sabila,  N.,  Silviani,  V.,  Haniadli,  Ariranur., 
Rizaldy, D., and Fidrianny, I. 2022. Phytochemical and Antioxidant 
Prole: Cucumber Pulp and Leaves Extracts. Open Access Macedonian 
Journal  of  Medical  Sciences  10(A):616-622..https://doi.org/10.3889/
oamjms.2022.8337.
Jin, W., Li, L., He, W., and Wei, Z. 2024. Application of Silica Nanoparticles 
Improved  the  Growth,  Yield,  and  Grain  Quality  of  Two  Salt-Tolerant 
Rice Varieties under Saline Irrigation. Plants,  13, 2452. https:// doi.
org/10.3390/plants13172452.
Karamchandani, B.M., S. Dalvi, M. Bagayatkar, I.M. Banat. and S.K. 
Satpute. 2024. Prospective applications of chitosan and chitosan-
based nanoparticles formulations in sustainable agricultural practices. 
Biocatalysis and Agricultural Biotechnology, 58:103210. https://doi.
org/10.1016/j.bcab.2024.103210
Kolbert, Z., Szollosi, R., Rónavári, A., and Molnár, Á. 2022. Nanoforms of essential 
metals: from hormetic  phytoeects to agricultural potential.  Journal  of 
Experimental  Botany,  73(6),1825-1840. 
https://doi.org/10.1093/jxb/
erab547.
Kovács, S., Kutasy, E. and Csajbók, J. 2022. The multiple role of silicon nutrition 
in alleviating environmental stresses in sustainable crop production. 
Plants, 11(9), 12-23. https://doi.org/10.3390/plants11091223.
Laguna-Estrada, M., Ramírez-Pérez, N.V., Araujo-Rodríguez, J.A. y Rubín-
Ramírez, N.N. 2024. Un breve resumen sobre la implementación de los 
sistemas expertos en problemas de agricultura. Research  in  Computing 
Science, 153(9), 239-245. https://rcs.cic.ipn.mx.
Morteza, S., Moharrami, F., Sarikhani, S., and Padervand, M. 2020. Selenium 
and  silica  nanostructurebased  recovery  of  strawberry  plants  subjected 
to drought stress. Scientifc  Reports,  10:17672.  https://doi.org/10.1038/
s41598-020-74273-9.
Navarro-López, N.E., González-Torres, A.M., Pérez-Pérez, A.E., Morales-
Mazariego, N., y González-Moscoso, M. 2024. Nanotecnología en la 
agricultura: Innovación para la producción sostenible de alimentos. 
Azcatl, 3, 23-27. doi: 10.24275/AZC2024B005
Paris, L., López, H., Medina, R., y Pérez, I. 2021. Efecto de bioestimulantes sobre el 
crecimiento de la Vainilla Tahitensis en Daule, Ecuador. Revista Cientíca 
Ecociencia, 8(6), 1-14. https://doi.org/10.21855/ecociencia.86.570.
Pérez-Velasco, E.A., Betancourt-Galindo, R., Valdez-Aguilar, L.A., González-
Fuentes, J.A., Puente-Urbina, B.A., Lozano-Morales, S.A., and Sánchez-
Valdés,  S.  2020.  Eects  of  the  morphology,  surface  modication  and 
application methods of ZnO-NPs on the growth and biomass of tomato 
plants. Molecules, 25(6), 1282.DOI:10.3390/ molecules25061282.
Picos-Corrales, L. A., Morales-Burgos, A.M., Ruelas-Leyva, J.P., Crini, G., 
García-Armenta, E., Jimenez-Lam, S.A., Ayón-Reyna, L.E., Rocha-
Alonzo, F., Calderón-Zamora, L., Osuna-Martínez, U., Calderón-Castro, 
A., De-Paz-Arroyo, G., and Inzunza-Camacho, L.N. 2023. Chitosan as 
an outstanding polysaccharide improving health-commodities of humans 
and environmental protection. Polymers 15:526 https://doi.org/10.3390/
polym15030526.
Quirino-García, A., Martínez-Alonso, C., Sabino-López, J.E., Espinosa-
Rodríguez, M., Vázquez-Villamar, M., y Maldonado-Peralta, M.Á. 2024. 
Aspersión foliar de nanoestructuras con zinc en plántulas de pepino 
(Cucumis sativus L.). Ecosistemas y Recursos Agropecuarios IV: e4095. 
DOI: 10.19136/era.a11nIV.4095.
Rastogi,  A.,  Kumar-Tripathi,  D.,  Yadav  S.,  Kumar-Chauhan,  D.,  and  Živčák, 
M., Ghorbanpour, M., El-Sheery, N.I., y Brestic, M. 2019.  Application 
of silicon nanoparticles in agriculture, Biotechnology,  3, 9-90. DOI: 
10.1007/s13205-019-1626-7.
Figure 7. Nutraceutical quality of fruits, polyphenols (A), 
avonoids (B), antioxidants (C) and total soluble solids 
(D).  Dierent  letters  above  the  bars  indicate  signicant 
dierences  between  treatments  at  p≤0.05,  according  to 
Tukey’s test.