This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
    Rev. Fac. Agron. (LUZ). 2025, 42(3): e254232 July-September. ISSN 2477-9409.
6-6 |
eect, especially under nutrient-limited conditions. The FA treatment 
improved morphological variables such as stem diameter by 25.6 % 
and fresh weight by 48 % and dry weight by 42.8 % compared to the 
control, and increased yield by 43 %, demonstrating its potential as a 
biostimulant in systems without mineral fertilization.
However, when considering all variables were considered 
simultaneously through multivariate analysis, FA did not outperform 
the complete nutrient solution and showed no synergistic eect when 
combined with it. Biochemically, its application was associated with 
higher nitrate and soluble solids accumulation, without improvements 
in pigments, antioxidant capacity, or visual quality.
These results suggest that fulvic acid can partially modulate growth 
and metabolism during early development, but the nutrient context 
strongly conditioned its ecacy. Therefore, fulvic acid represents a 
viable alternative to stimulate microgreen development under limited 
nutrient conditions or as a complementary strategy. However, it does 
not replace the need for balanced mineral fertilization when the goal 
is to maximize productivity, quality, and commercial consistency of 
the crop.
Literature cited 
Anastacio-Angel, G., González-Fuentes, J.A., Zermeño-González, A., Robledo-
Olivo,  A.,  Lara-Reimers,  E.A.,  &  Peña-Ramos,  F.M.  (2024).  Efecto 
de  bioestimulantes  en  crecimiento,  siología  y  calidad  bioquímica 
de frambuesa (Rubus idaeus L.) sometida a estrés hídrico. Terra 
Latinoamericana, 42,1-4. https://doi.org/10.28940/terra.v42i0.1772
Bell, J.C., Bound, S.A., & Buntain, M. (2022). Biostimulants in agricultural and 
horticultural  production,  In  I.  Warrington  (Ed.),  Horticultural Reviews, 
49, (pp. 35-95). https://doi.org/10.1002/9781119851981.ch2
Canellas, L.P., Olivares, F.L., Aguiar, N.O., Jones, D.L., Nebbioso, A., Mazzei, 
P.,  &  Piccolo,  A.  (2015).  Humic  and  fulvic  acids  as  biostimulants  in 
horticulture. Scientia Horticulturae, 196, 15-27. https://doi.org/10.1016/j.
scienta.2015.09.013
Choe, U., Yu, L.L., & Wang, T.T (2018). The science behind microgreens as an 
exciting new food for the 21st century. Journal of Agricultural and Food 
Chemistry, 60(31), 7644-7651. https://doi.org/10.1021/jf2057816
Drobek,  M.,  Fraś,  A.,  Molas,  J.,  &  Kurasiak-Popowska,  D.  (2019).  Plant 
biostimulants: Importance of the quality and yield of horticultural crops 
and the improvement of biological and physiological processes. Folia 
Horticulturae, 31(2), 139-149. https://doi.org/10.2478/fhort-2019-0012
Ebert, A.W.  (2022).  Sprouts  and  microgreens:  Novel  food  sources  for  healthy 
diets. Plants, 11(4), 571. https://doi.org/10.3390/plants11040571 
Gao,  Y.,  Chen,  S.,  Y.,  &  Shi,  Y.  (2023).  Eect  of  nano-calcium  carbonate  on 
morphology, antioxidant enzyme activity and photosynthetic parameters 
of wheat (Triticum aestivum L.) seedlings. Chemical and Biological 
Technologies in Agriculture, 10(1), 31. https://doi.org/10.1186/s40538-
023-00404-9
Graziani, G., Cirillo, A., Giannini, P., Conti, S., El-Nakhel, C., Rouphael, Y., & 
Di Vaio, C. (2022). Biostimulants improve plant growth and bioactive 
compounds of young olive trees under abiotic stress conditions. 
Agriculture, 12(2), 227. https://doi.org/10.3390/agriculture12020227 
Hasanuzzaman, M., Parvin, K., Bardhan, K., Nahar, K., Anee, T.I., Masud, A.A.C., 
&  Fotopoulos,  V.  (2021).  Biostimulants  for  the  regulation  of  reactive 
oxygen species metabolism in plants under abiotic stress. Cells, 10(10), 
2537 https://doi.org/10.3390/cells10102537 
He,  X.,  Zhang,  H., Ye,  X.,  Hong,  J.,  &  Ding,  G.  (2021). Nitrogen  assimilation 
related genes in Brassica napus: Systematic characterization and 
expression  analysis  identied  hub  genes  in  multiple  nutrient  stress 
responses. Plants, 10(10), 2160. https://doi.org/10.3390/plants10102160 
Lichtenthaler, H.K., & Wellburn, A.R. (1983). Determinations of total carotenoids 
and chlorophylls a and b of leaf extracts in dierent solvents. Biochemical 
Society Transactions, 11(5), 591-592. https://doi.org/10.1042/bst0110591
Lin, X.Y., Ye, Y.Q., Fan, S.K., Jin, C.W., & Zheng, S.J. (2016). Increased sucrose 
accumulation  regulates  iron-deciency  responses  by  promoting  auxin 
signaling in Arabidopsis plants. Plant Physiology,  170(2), 907-920. 
https://doi.org/10.1104/pp.15.01598
Márquez-García, B., Horemans, N., Cuypers, A., Guisez, Y., & Córdoba, F. (2011). 
Antioxidants in Erica andevalensis: A comparative study between wild 
plant and cadmium-exposed plants under controlled conditions. Plant 
Physiology and Biochemistry, 49(1), 110-115.  https://doi.org/10.1016/j.
plaphy.2010.10.007
Mosaad, I.S., Selim, E.M.M., Gaafar, D.E., & Al-Anoos, M.A. (2024). Eects of 
humic and fulvic acids on forage production and grain quality of triticale 
under various soil salinity levels. Cereal Research Communications. 
https://doi.org/10.1007/s42976-024-00609-0
Muscolo,  A.,  Francioso,  O.,  Tugnoli,  V.,  &  Nardi,  S.  (2007).  The  auxin-like 
activity of humic substance is related to membrane interactions in carrot 
cell cultures. Journal of Chemical Ecology, 33(1), 115-129. https://doi.
org/10.1007/s10886-006-9206-9
Nardi, S., Pizzeghello, D., Muscolo, A., & Vianello, A. (2002). Physiological eects 
of humic substances on higher plants. Soil Biology and Biochemistry, 
34(11), 1527-1536. https://doi.org/10.1016/S0038-0717(02)00174-8
Pizzeghello, D., Nicolini, G., & Nardi, S. (2001). Hormone-like activity of humic 
substances in Fagus sylvatica forests. New Phyrologits,151(3), 647-657. 
https://doi.org/10.1046/j.0028-646x.2001.00223.x
Rodríguez-Roque, M.K., Rojas-Grau, M.A., Elez-Martínez, P., & Martín-Belloso, 
O. (2013). Soymilk  phenolic  compounds,  isoavones,  and  antioxidant 
activity as aected by in vitro gastrointestinal digestion. Food Chemistry, 
136(1), 206-212. https://doi.org/10.1016/j.foodchem.2012.07.115
Rouphael, Y., Colla, G., & De Pascale, S. (2021). Sprouts, microgreens and edible 
owers  as  novel  functional  foods.  Agronomy, 11(12), 2568. https://doi.
org/10.3390/agronomy11122568
Sano, T., Kutsuna, N., Becker, D., Hedrich, R., & Hasezawa, S. (2009). Outward‐
rectifying K+ channel activities regulate cell elongation and cell division 
of  tobacco  BY‐2  cells.  The Plant Journal,  57(1), 55-64. https://doi.
org/10.1111/j.1365-313X.2008.03672.x
Seth,  T.,  Mishra,  G.P.,  Chattopadhyay,  A.,  Roy,  P.D.,  Devi,  M.,  Sahu,  A.,  & 
Nair, R.M. (2025). Microgreens: Functional food for nutrition and 
dietary  diversication.  Plants,  14(4), 526. https://doi.org/10.3390/
plants14040526
Sharma, S., Shree, B., Sharma, D., Kumar, S., Kumar, V., Sharma, R., & Saini, R. 
(2022). Vegetable microgreens: The gleam of next generation superfoods, 
their  genetic  enhancement,  health  benets,  and  processing  approaches. 
Food Research International,  155, 111038. https://doi.org/10.1016/j.
foodres.2022.111038 
Tallei,  T.E.,  Kepel,  B.J.,  Wungouw,  H.I.S.,  Nurkolis,  F.,  &  Fatimawali, A.A.A. 
(2024). A Comprehensive review on the antioxidant activities and 
health benets of microgreens: current insights and future perspectives. 
International Journal of Food Science and Technology, 59(1), 58-71. 
https://doi.org/10.1111/ijfs.16805
Verlinden,  S.  (2020).  Microgreens:  Denitions,  product  types,  and  production 
practices, In I. Warrington (Ed.), Horticultural Reviews, 47 (pp. 85-124). 
Wiley Online Library. https://doi.org/10.1002/9781119625407.ch3
Toscano, S., Cavallaro, V., Ferrante, A., Romano, D., & Patané, C. (2021). Eects 
of  dierent  light  spectra  on  nal  biomass  production  and  nutritional 
quality of two microgreens. Plants, 10(8), 1584. https://doi.org/10.3390/
plants10081584
Wang,  K.,  Li, Y.,  Zhang, Y.,  Lou, X., &  Sun,  J. (2022). Improving  myobrillar 
proteins solubility and thermostability in low-ionic strength solution: 
A review. Meat Science, 189, 108822. https://doi.org/10.1016/j.
meatsci.2022.108822
Xiao, Z., Lester, G.E., Luo, Y.,  & Wang, Q. (2012). Assessment of vitamin and 
carotenoid concentrations of emerging food products: edible microgreens. 
Journal of Agricultural and Food Chemistry, 60(31),7644-7651. https://
doi.org/10.1021/jf2057816
Xiao,  Z.,  Raush,  S.T.,  Luo, Y.,  Sun,  J., Yu,  L.,  Wang,  Q.,  Chen,  P.,  Yu,  L.,  & 
Stommel J.R. (2019). Microgreens of Brassicaceae: Genetic diversity 
of phytochemical concentrations and antioxidant capacity. LWT – 
Food Science and Technology, 101, 731-737. https://doi.org/10.1016/j.
lwt.2018.10.076
Zhang, P., Zhang, H., Wu, G., Chen, X., Gruda, N., Li, X., & Duan, Z. (2021). 
Dose-dependent application of straw-derived fulvic acid on yield and 
quality of tomato plants grown in a greenhouse. Frontiers in Plant 
Science, 12, 736613. https://doi.org/10.3389/fpls.2021.736613