This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
    Rev. Fac. Agron. (LUZ). 2025, 42(3): e254231 July-September. ISSN 2477-9409.
6-6 |
Veterinary Research and Animal Science, 60, e195697-e195697. https://
doi.org/10.11606/issn.1678-4456.bjvras.2023.195697 
Miao, J., Chen, Z., Zhang, Z., Wang, Z., Wang, Q., Zhang, Z., & Pan, Y. (2023). 
A web tool for the global identication of pig breeds. Genetics Selection 
Evolution, 55, 18. https://doi.org/10.1186/s12711-023-00788-0.
Moretti, R., Criscione, A., Turri, F., Bordonaro, S., Marletta, D., Castiglioni, B., & 
Chessa, S. (2022). A 20-SNP Panel as a Tool for Genetic Authentication 
and  Traceability  of  Pig  Breeds.  Animals,  12(11), 1335. https://doi.
org/10.3390/ani12111335. 
Muñoz, M., García-Casco, J. M., Alves, E., Benítez, R., Barragán, C., Caraballo, 
C.,  &  Silió,  L.  (2020).  Development  of  a  64  SNV  panel  for  breed 
authentication  in  Iberian  pigs  and  their  derived  meat  products.  Meat 
Science. 167, 108152.  https://doi.org/10.1016/j.meatsci.2020.108152. 
Óvilo, C., Trakooljul, N., Núñez, Y., Hadlich, F., Murani, E., Ayuso, M., & Muñoz, 
M. (2022). SNP discovery and association study for growth, fatness and 
meat quality traits in Iberian crossbred pigs. Scientic Reports, 12,16361. 
https://doi.org/10.1038/s41598-022-20817-0.
Palma-Granados,  P.,  García-Casco,  J.  M.,  Caraballo,  C.,  Vázquez-Ortego,  P., 
Gómez-Carballar,  F.,  Sánchez-Esquiliche,  F.,  &  Muñoz,  M.  (2023). 
Design of a low-density SNP panel for intramuscular fat content and fatty 
acid composition of backfat in free-range Iberian pigs
. Journal of Animal 
Science, 101, skad079.  https://doi.org/10.1093/jas/skad079. 
Pasupa, K., Rathasamuth, W., & Tongsima, S. (2020). Discovery of  signicant 
porcine SNPs for swine breed identication by a hybrid of information 
gain, genetic algorithm, and frequency feature selection technique. BMC 
Bioinformatics, 21, 216. https://doi.org/10.1186/s12859-020-3471-4.
Schiavo, G., Bertolini, F., Galimberti, G., Bovo, S., Dall’Olio, S., Costa, L. N., & 
Fontanesi, L. (2020). A machine learning approach for the identication 
of  population-informative  markers  from  high-throughput  genotyping 
data: application to several pig breeds. Animal, 14(2), 223-232. https://
doi.org/10.1017/S1751731119002167.
Wang, Z., Zhang, Z., Chen, Z., Sun, J., Cao, C., Wu, F.,  Xu, Z., Zhao, W., Sun, H., 
Guo, L., Zhang, Z., & Pan, Y. (2022). PHARP: A pig haplotype reference 
panel for genotype imputation. Scientic Reports, 12, 12645. https://doi.
org/10.1038/s41598-022-15851-x. 
Wilkinson,  S., Wiener,  P., Archibald, A.  L.,  Law, A.,  Schnabel, R. D., McKay, 
S.  D.,  &  Ogden,  R.  (2011).  Evaluation  of  approaches  for  identifying 
population  informative  markers  from  high  density  SNP  Chips.  BMC 
Genetics, 12, 45. https://doi.org/10.1186/1471-2156-12-45.
Wilkinson, S., Archibald, A. L., Haley, C. S., Megens, H. J., Crooijmans, R. P., 
Groenen,  M. A.,  &  Ogden,  R.  (2012).
  Development  of  a  genetic  tool 
for  product  regulation  in  the  diverse  British  pig  breed  market.  BMC 
Genomics, 13, 580, https://doi.org/10.1186/1471-2164-13-580.
Yang, B., Cui, L., Perez-Enciso, M., Traspov, A., Crooijmans, R. P., Zinovieva, 
N.,  Schook, L., Archibald, A., Gatphayak, K., Knorr, C., Triantafyllidis, 
A., Alexandri, P., Semiadi, G., Hanotte, O., Dias, D., Dovc, P., Uimari, 
P. lacolina, L., Scandura, M., Groenen, M., Huang, L. & Megens, H. J. 
(2017). Genome-wide SNP data unveils the globalization of domesticated 
pigs.  Genetics  Selection  Evolution,  49, 71. https://doi.org/10.1186/
s12711-017-0345-y. 
Zhang, C. Y., Wang, Z., Bruce, H. L., Janz, J., Goddard, E., Moore, S., & Plastow, 
G. S. (2014). Associations between single nucleotide polymorphisms in 
33 candidate genes  and meat quality  traits in commercial  pigs. Animal 
Genetics
, 45(4), 508-516. https://doi.org/10.1111/age.12155.
Zhao,  C.,  Wang,  D.,  Teng,  J.,  Yang,  C.,  Zhang,  X.,  Wei,  X.,  &  Zhang,  Q. 
(2023).
  Breed  identication  using  breed-informative  SNPs  and 
machine learning based on whole genome sequence data and SNP chip 
data. Journal  of Animal Science  and Biotechnology, 14, 85. https://doi.
org/10.1186/s40104-023-00880-x.