This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rev. Fac. Agron. (LUZ). 2025, 42(3): e254231 July-September. ISSN 2477-9409.
6-6 |
Veterinary Research and Animal Science, 60, e195697-e195697. https://
doi.org/10.11606/issn.1678-4456.bjvras.2023.195697
Miao, J., Chen, Z., Zhang, Z., Wang, Z., Wang, Q., Zhang, Z., & Pan, Y. (2023).
A web tool for the global identication of pig breeds. Genetics Selection
Evolution, 55, 18. https://doi.org/10.1186/s12711-023-00788-0.
Moretti, R., Criscione, A., Turri, F., Bordonaro, S., Marletta, D., Castiglioni, B., &
Chessa, S. (2022). A 20-SNP Panel as a Tool for Genetic Authentication
and Traceability of Pig Breeds. Animals, 12(11), 1335. https://doi.
org/10.3390/ani12111335.
Muñoz, M., García-Casco, J. M., Alves, E., Benítez, R., Barragán, C., Caraballo,
C., & Silió, L. (2020). Development of a 64 SNV panel for breed
authentication in Iberian pigs and their derived meat products. Meat
Science. 167, 108152. https://doi.org/10.1016/j.meatsci.2020.108152.
Óvilo, C., Trakooljul, N., Núñez, Y., Hadlich, F., Murani, E., Ayuso, M., & Muñoz,
M. (2022). SNP discovery and association study for growth, fatness and
meat quality traits in Iberian crossbred pigs. Scientic Reports, 12,16361.
https://doi.org/10.1038/s41598-022-20817-0.
Palma-Granados, P., García-Casco, J. M., Caraballo, C., Vázquez-Ortego, P.,
Gómez-Carballar, F., Sánchez-Esquiliche, F., & Muñoz, M. (2023).
Design of a low-density SNP panel for intramuscular fat content and fatty
acid composition of backfat in free-range Iberian pigs
. Journal of Animal
Science, 101, skad079. https://doi.org/10.1093/jas/skad079.
Pasupa, K., Rathasamuth, W., & Tongsima, S. (2020). Discovery of signicant
porcine SNPs for swine breed identication by a hybrid of information
gain, genetic algorithm, and frequency feature selection technique. BMC
Bioinformatics, 21, 216. https://doi.org/10.1186/s12859-020-3471-4.
Schiavo, G., Bertolini, F., Galimberti, G., Bovo, S., Dall’Olio, S., Costa, L. N., &
Fontanesi, L. (2020). A machine learning approach for the identication
of population-informative markers from high-throughput genotyping
data: application to several pig breeds. Animal, 14(2), 223-232. https://
doi.org/10.1017/S1751731119002167.
Wang, Z., Zhang, Z., Chen, Z., Sun, J., Cao, C., Wu, F., Xu, Z., Zhao, W., Sun, H.,
Guo, L., Zhang, Z., & Pan, Y. (2022). PHARP: A pig haplotype reference
panel for genotype imputation. Scientic Reports, 12, 12645. https://doi.
org/10.1038/s41598-022-15851-x.
Wilkinson, S., Wiener, P., Archibald, A. L., Law, A., Schnabel, R. D., McKay,
S. D., & Ogden, R. (2011). Evaluation of approaches for identifying
population informative markers from high density SNP Chips. BMC
Genetics, 12, 45. https://doi.org/10.1186/1471-2156-12-45.
Wilkinson, S., Archibald, A. L., Haley, C. S., Megens, H. J., Crooijmans, R. P.,
Groenen, M. A., & Ogden, R. (2012).
Development of a genetic tool
for product regulation in the diverse British pig breed market. BMC
Genomics, 13, 580, https://doi.org/10.1186/1471-2164-13-580.
Yang, B., Cui, L., Perez-Enciso, M., Traspov, A., Crooijmans, R. P., Zinovieva,
N., Schook, L., Archibald, A., Gatphayak, K., Knorr, C., Triantafyllidis,
A., Alexandri, P., Semiadi, G., Hanotte, O., Dias, D., Dovc, P., Uimari,
P. lacolina, L., Scandura, M., Groenen, M., Huang, L. & Megens, H. J.
(2017). Genome-wide SNP data unveils the globalization of domesticated
pigs. Genetics Selection Evolution, 49, 71. https://doi.org/10.1186/
s12711-017-0345-y.
Zhang, C. Y., Wang, Z., Bruce, H. L., Janz, J., Goddard, E., Moore, S., & Plastow,
G. S. (2014). Associations between single nucleotide polymorphisms in
33 candidate genes and meat quality traits in commercial pigs. Animal
Genetics
, 45(4), 508-516. https://doi.org/10.1111/age.12155.
Zhao, C., Wang, D., Teng, J., Yang, C., Zhang, X., Wei, X., & Zhang, Q.
(2023).
Breed identication using breed-informative SNPs and
machine learning based on whole genome sequence data and SNP chip
data. Journal of Animal Science and Biotechnology, 14, 85. https://doi.
org/10.1186/s40104-023-00880-x.