This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
    Rev. Fac. Agron. (LUZ). 2025, 42(2): e254229 April-June. ISSN 2477-9409.
6-6 |
Acknowledgments
Romero-Domínguez  had  a  CONACYT  scholarship  during  his 
Master of Science studies (B091484). Hernández-Mendoza, Quiroz-
Velásquez,  and  Hernández-Delgado  are  EDI-IPN.  Hernandez-
Delgado is COFAA-IPN. Hernández-Mendoza and Quiroz-Velásquez 
are SNI. 
Literature cited
Abu-Zaitoon, Y., Aladaileh, S., and Tawaha, A. R. A.. (2016). Contribution of the 
IAM Pathway to IAA Pool in Developing Rice Grains. Brazilian Archives 
of Biology and Technology, 59, e16150677. https://doi.org/10.1590/1678-
4324-2016150677
Bajguz  A.  &  Piotrowska-Niczyporuk  A.  (2023).  Biosynthetic  Pathways  of 
Hormones  in  Plants.  Metabolites, 13(8),  884.  https://doi.org/10.3390/
metabo13080884.
Braithwaite, M., Johnston, P. R., Ball, S. L., Nourozil, F., Hay, A. J., Shoukouhi, 
P., Chomic, A., Lange, C., Ohkura, M., Nieto-Jacobo, M. F., Cummings, 
N. J., Bienkowski, D., Mendoza-Mendoza, A., Hill, R. A., McLean, K. 
L., Stewart, A., Steyaert, J. M. and Bissett, J. (2017). Trichoderma down 
under: species diversity and occurrence of Trichoderma in New Zealand. 
Australasian Plant Pathology. 46, 11–30. https://doi.org/10.1007/s13313-
016-0457-9
Cai,  F.,  Chen,  W.,  Wei,  Z.,  Pang,  G.,  Li,  R.,  Ran,  W.and  Shen,  Q.  (2015). 
Colonization  of  Trichoderma harzianum strain  SQR-T037  on  tomato 
roots and  its  relationship  to plant  growth,  nutrient  availability and soil 
microora.  Plant Soil, 388,  337–350.  https://doi.org/10.1007/s11104-
014-2326-.
Dam,  N.  M.&  Bouwmeester,  H.  J.  (2016).  Metabolomics  in  the  Rhizosphere: 
Tapping  into  Belowground  Chemical  Communication.  Trends in Plant 
Science, 21, 256-265. https://doi.org/10.1016/j.tplants.2016.01.008
Feng, Y., Tian, B., Xiong, Lin,G., Cheng L., Zhang T., Lin B.,, Ke Z., and Xin 
L.  (2024).  Exploring  IAA  biosynthesis  and  plant  growth  promotion 
mechanism for tomato root endophytes with incomplete IAA  synthesis 
pathways. Chemical and Biological Technologies in Agriculture, 11, 187. 
https://doi.org/10.1186/s40538-024-00712-8
Fu, S.F., Wei, J.Y., Chen, H.W., Liu, Y.Y., Lu, H.Y., and Chou, J.Y. (2015). Indole-
3-acetic acid: A  widespread  physiological  code  in interactions of fungi 
with other organisms. Plant Signaling & Behavio,10(8), e1048052. doi: 
10.1080/15592324.2015.1048052. 
Ghasemi, S., Safaie, N., Shahbazi, S., Shams-Bakhsh, M., and Askari, H. (2020). 
The  Role  of  Cell  Wall  Degrading  Enzymes  in  Antagonistic  Traits  of 
Trichoderma virens  Against  Rhizoctonia solani.  Iraniab Journal of 
Biotechnology, 18(4), e2333. doi: 10.30498/IJB.2020.2333. 
Guzmán-Guzmán,  P.,  Aleman-Duarte,  M.  I.,  Delaye,  L.,  Herrera-Estrella,  A., 
and  Olmedo-Monl,  V.  (2017).  Identication  of  eector-like  proteins 
in  Trichoderma  spp.  and  role  of  a  hydrophobin  in  the  plant-fungus 
interaction  and  mycoparasitism.  BMC Genetics, 18,  16.  https://doi.
org/10.1186/s12863-017-0481-y.
Etesami, H., & Glick B. (2024). Bacterial indole-3-acetic acid: A key regulator 
for  plant  growth,  plant-microbe  interactions,  and  agricultural  adaptive 
resilience,  Microbiological Research, 281,  127602.  https://doi.
org/10.1016/j.micres.2024.127602.
Hernández-Mendoza,  J.  L.,  Moreno-Medina,  V.  R.,  Quiroz-Velásquez,  J.  D., 
García-Olivares, J. G., & Mayek-Pérez, N. (2010). Efecto de diferentes 
concentraciones de ácido antranílico en el crecimiento del maíz. Revista 
Colombiana  de  Biotecnología,  XII(1),57-63.  doi:  https://www.redalyc.
org/articulo.oa?id=77617786007
Hirayama, T., & Mochida, K. (2022). Plant Hormonomics: A Key Tool for Deep 
Physiological Phenotyping to Improve Crop Productivity. Plant and Cell 
Physiology, 63(12), 1826-1839. https://doi.org/10.1093/pcp/pcac067.
Leontovyčová,  H.,  Trdá,  L.,  Dobrev,  P.I.,  Šašek,  V.,  Gay,  E.,  Balesdent,  M.H., 
and  Burketová,  L.  (2020).  Auxin  biosynthesis  in  the  phytopathogenic 
fungus Leptosphaeria maculans is associated with enhanced transcription 
of  indole-3-pyruvate  decarboxylase  LmIPDC2  and  tryptophan 
aminotransferase  LmTAM1.  Research in Microbiology,  171(5-6),  174-
184. https://doi.org/10.1016/j.resmic.2020.05.001.
Lopez-Coria,  M.,  Hernández-Mendoza,  J.  L.,  and  Sánchez-Nieto,  S.  (2016).  T. 
asperellum  induces maize  seedling  growth  by  activating the  PM  H+  1 
-2  ATPase.  Molecular Plant-Microbe Interactions
,  29,  797-806.  doi.
org/10.1069/MPMI-07-16-0138-R.
Lubna,  Asaf,  S.,  Hamayun,  M.,  Gul,  H.,  Lee,  I.  J.,  and  Hussain,  A.  (2018). 
Aspergillus niger CSR3  regulates  plant  endogenous  hormones  and 
secondary metabolites by producing  gibberellins  and  indoleacetic  acid. 
Journal of Plant Interactions, 13(1), 100–111. https://doi.org/10.1080/1
7429145.2018.1436199.
Naveed, M., Amjad, Q. M., Zahir, Z. A., Hussain, M. B., Sessitsch, A., and Mitter, 
B.  L.  (2015).    Annals of Microbiology,  65:1381-1389.  doi:  10.1007/
s13213-014-0976-y
Mory, N. & Strader, L. (2020) Old Town Roads: routes of auxin biosynthesis 
across kingdoms, Current Opinion in Plant Biology, 55,  21-27, https://
doi.org/10.1016/j.pbi.2020.02.002.
Nieto-Jacobo,  M.  F.,  Steyaert,  J.  M.,  Salazar-Badillo,  F.  B.,  Nguyen,  D.V., 
Rostás,  M.,  Braithwaite,  M.,  and  Mendoza-Mendoza,  A.  (2017). 
Environmental  Growth  Conditions  of  Trichoderma  spp. Aects  Indole 
Acetic Acid Derivatives, Volatile Organic Compounds, and Plant Growth 
Promotion Frontiers in Plant Science.  8,  102.  https://doi.org/10.3389/
fpls.2017.00102.
Peñael-Jaramillo, M. F., Torres-Navarrete, E. D., Barrera-Álvarez, A. E., Prieto-
Encalada, H. G., Morante, C. J., and Canchignia-Matínez, H. F. (2016). 
Ciencias  agrarias  producing  indole-3acetic  acid  using  Pesudomonas 
veronii R4 and in vitro formation of roots in Thompson seedless grapevine 
leaves. Ciencia y Tecnología, 9, 31-36. https://revistas.uteq.edu.ec/index.
php/cyt/article/view/158/172
Pirog, T.P. & Piatetska, D.V. & Klymenko, N.O. and Iutynska, G.O.. (2022). Ways 
of Auxin Biosynthesis in Microorganisms. Microbiological Journal, 84, 
57-72. doi: https://doi.org/10.15407/microbiolj84.02.057. 
SAS Institute Inc. (2004). SAS/STAT ® 9.1 User’s Guide. Cary, NC: SAS Institute 
Inc.
Saleem, A.,  Qasim,  M. W., Ahmad, A., Bibi, A.,  Haq, I.  U.,  Khan, A. A.,  and 
Sajjad, M. (2024). Recent Advances in Photosynthesis, Plant Hormones 
and  Applications  in  Plant  Growth.  Haya: The Saudi Journal of Life 
Sciences, 9(1), 17-22. http://dx.doi.org/10.36348/sjls.2024.v09i01.003
Sztein, A.E., Ilić, N., Cohen, J.D. et al. (2002). Indole-3-acetic acid biosynthesis 
in isolated axes from germinating bean seeds: The eect of wounding on 
the biosynthetic pathway. Plant Growth Regulation 36, 201–207. https://
doi.org/10.1023/A:1016586401506
Tang, J. Li, Y., Zhang, L., Mu, J., Jiang, Y., Fu, H., Zhang, Y., Cui, H., Yu, X., 
and  Ye,  Z.  (2023)  Biosynthetic  Pathways  and  Functions  of  Indole-3-
Acetic Acid in Microorganisms. Microorganisms, 11(8), 2077. https://doi.
org/10.3390/microorganisms11082077
Tariq,  A.,  &  Ahmed,  A.  (2022).  Auxins-Interkingdom  Signaling  Molecules. 
IntechOpen. doi: 10.5772/intechopen.102599
Uribe-Bueno, M., Hernández-Mendoza, J.L., García, C., Ancona V., Larios-Serrato, 
V. (2020). Independent Tryptophan pathway in Trichoderma asperellum 
and  T koningiopsis:  New  insights  with  bioinformatic  and  molecular 
analysis. bioRxiv preprint doi: https://doi.org/10.1101/2020.07.31.230920.
Yao, X., Guo, H., Zhang, K., Zhao, M., Ruan, J., and Chen, J. (2023).Trichoderma 
and  its  role  in  biological  control  of  plant  fungal  and  nematode 
disease.  Frontiers in Microbiology,  3(14),  1160551.  doi:  10.3389/
fmicb.2023.1160551. 
Yin,  Q.,  Zhang,  J.,  Wang,  S.   
  Jintang  Cheng,  Han  Gao,  Cong  Guo,  Lianbao 
Ma,  Limin  Sun,  Xiaoyan  Han,  Shilin  Chen,  An  Liu.  (2021). 
N-glucosyltransferase  GbNGT1  from  ginkgo  complements  the  auxin 
metabolic  pathway.  Hortic Res  8,  229  https://doi.org/10.1038/s41438-
021-00658-0
Zuo W.L., Okmen B., Depotter J.R.L., Ebert M.K., Redkar A., Villamil J.M., and 
Doehlemann G. (2019). Molecular Interactions between smut fungi and 
their host  plants.  Annual Review of Phytopathology,  57,  411–430.  doi: 
10.1146/annurev-phyto-082718-100139.