This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rueda-Luna et al. Rev. Fac. Agron. (LUZ). 2025, 42(1): e254215
5-5 |
plant). These values are below those reported by Moreno-Reséndez et 
al. (2019) for the Mona Lisa F1 hybrid, which yielded 3.987 kg per 
plant. These discrepancies could be attributed to the diering nutrient 
requirements of the cultivars.
The highest dry leaf weight was observed when the K
+
/Ca
2+
+Mg
2+
 
ratio  was  1.0.  However,  the  dierent  K
+
/Ca
2+
+Mg
2+ 
ratios in the 
nutrient  solution  did  not  aect  the  dry  leaf  weight  of  the  plant. 
Nevertheless, they could inuence greater calcium assimilation and 
a potential increase in average fruit weight. The results suggest that 
the optimal K
+
/Ca
2+
+Mg
2+
 ratio in plant nutrition may be established 
a balance point between production and dry plant weight, situated 
between 1.0 and 1.8 (in meq.L
-1
). These values may be considered 
as reference indices for zucchini cultivation. Similar results were 
reported by Diovisalvi et al. (2021) in a study of dierent soybean crop 
nutrition. In a related study, Aguilar-Carpio et al. (2022) observed that 
the integration of chemical fertilization with biostimulants, such as 
seaweed extracts, resulted in enhanced growth, yield, and protability 
in  zucchini.  These  ndings  highlight  the  potential  of  optimized 
nutrient management strategies to enhance crop productivity. In 
line with this, Melito et al. (2023) found that applying appropriate 
levels of organic-mineral fertilizers increased the growth and yield 
of zucchini, supporting the notion that nutrient optimization plays a 
signicant role in enhancing zucchini productivity.
The  results  of  the  leaf  analysis  reect  a  higher  concentration 
of calcium (4377.0 ppm) in Ambrosia compared to Zuchinni Gray 
(4156.33 ppm). Similarly, the highest calcium values were recorded 
in plants that received the nutrient solution with a K
+
/Ca
2+
+Mg
2+
 ratio 
of 1.0 and 1.4, with values of 4550.0 ppm in both cases. The statistical 
analysis revealed no  signicant  dierences in the  mineral  elements 
potassium and magnesium among the cultivars or across the dierent 
K
+
/Ca
2+
+Mg
2+
 ratios.
The overall, the assimilation of cations K
+
, Ca
2+
 and Mg
2+
 was 
found to be similar between the evaluated cultivars, irrespective of 
the harvest date. The absorption of potassium (4225.0 ppm) was 
higher following fruit formation with a K
+
/Ca
2+
+Mg
2+
 ratio of 1.4, 
as potassium is an element that typically inuences fruit coloration, 
increasing pigmentation by raising carotenoid content while reducing 
chlorophyll content (CPHA, 2004). Furthermore, the absorption of 
calcium reached concentrations of 4550.0 ppm, while magnesium 
reached 2050.0 ppm. These results are in accordance with the ndings 
of Rodas-Gaitán et al. (2012), who observed that in zucchini, calcium 
was the primary absorbed element at 7.47, followed by magnesium 
at 2.07 and potassium at 1.37 g.plant
-1
. However, the present study 
revealed higher potassium concentration was observed. With regard 
to calcium, its assimilation also increased during the fruiting stage 
with the highest contents observed in the leaves of plants that received 
a K
+
/Ca
2+
+Mg
2+
 ratio of 1.0 and 1.4. In contrast, plants that received 
a K
+
/Ca
2+
+Mg
2+
 ratio of 0.2 and 0.6 exhibited the lowest calcium 
contents across all evaluated physiological stages, potentially due to 
the antagonism relationship between the Ca
2+
 ion and K
+
 (Villalobos 
et al., 2009). This further supports the idea that nutrient balance, 
especially between calcium and potassium, plays a key role in 
determining plant health and fruit yield (Neocleous & Savvas, 2018). 
Seth et al. (2018) similarly found that an optimal balance between 
K
+
, Ca
2+
, and Mg
2+
 is essential for maximizing nutrient uptake and 
minimizing the antagonistic eects between these cations.
Conclusions
It  can  be  concluded  that  there  is  a  varietal  eect,  with  the 
Ambrosia variety demonstrating a higher total production compared 
to Zuchinni Gray. The K
+
/Ca
2+
+Mg
2+
  ratio  signicantly  inuenced 
the yield and nutritional composition of zucchini, with Ambrosia 
showing superior productivity compared to Zuchinni Gray. The K
+
/
Ca
2+
+Mg
2+
 ratio with a value of 1.4 (Ambrosia) and 1.8 (Zuchinni 
Gray) was observed to increase total production, which could be 
considered as a reference for zucchini cultivation. The optimal ratio 
of 1.4 to 1.8 promoted increased total production, fruit count, and 
enhanced calcium absorption. Moreover, the K
+
/Ca
2+
+Mg
2+
 ratio of 
1.4 led to an increase in leaf calcium content, while the potassium and 
magnesium contents remained constant.
Literature cited
Aguilar-Carpio, C., Cervantes-Adame, Y.F., Sorza-Aguilar, P.J., & Escalante-
Estrada, J.A.S. (2022). Growth,  yield,  and  protability  of  zucchini 
(Cucurbita pepo L.) fertilized with chemical and biological sources. 
Revista Terra Latinoamericana, 40, e1059. https://doi.org/10.28940/terra.
v40i0.1059
Alcántar-González, G., y Trejo-Téllez, L.I. (2010). Nutrición de cultivos. Colegio 
de Posgraduados, Mundi–Prensa, México, 454 pp. ISBN 978-968-7462-
48-6
Cadahía-López, C. (2005). Fertirrigación. Cultivos agrícolas, frutales y 
ornamentales. 3a Edición, Mundi-Prensa, Madrid, España, 631 pp. ISBN 
84-8476-247-5
CPHA. (2004). Manual of fertilizers for high yield crops. California Plant Health 
Association, Editorial Limusa. 366 pp. ISBN: 978-9681847661
Diovisalvi, N.V., Reussi-Calvo, N.I., Boxler, M., y García, F. (2021). Relevamiento 
de calcio, magnesio, potasio y micronutrientes en zonas con diferente 
productividad de soja. Ciencia del Suelo,  39(1), 63-79. https://www.
scielo.org.ar/pdf/cds/v39n1/1850-2067-cds-39-01-63.pdf
Estrada-Herrera, R., Hidalgo-Moreno. C., Guzmán-Plazola, R., Almaraz-Suárez, 
J.J., Navarro-Garza, H., & Etchevers-Barra, J.D. (2017). Soil quality 
indicators to evaluate soil fertility. Agrociencia,  51, 813-831. https://
www.scielo.org.mx/pdf/agro/v51n8/1405-3195-agro-51-08-813-en.pdf
Havlin, J.L., Tisdale, S.L., Nelson, W.L., & Beaton, J.D. (2017). Soil fertility and 
fertilizers: An Introduction to Nutrient Management. 8th edition, India 
Education Services Pvt. Ltd: Pearson. ISBN 978-93-325-7034-4
INEGI. (2014). Anuario estadístico y geográco de Puebla. Instituto Nacional de 
Estadística y Geografía, México. https://www.inegi.org.mx
Maroto-Borrego, J.V. (2002). Horticultura herbácea especial. 5ª Edición, Ediciones 
Mundi-Prensa, España, 704 pp. ISBN 978-8484760429
Melito, S., Ronga, D., Marceddu, D., Kallikazarou, N.I., Antoniou, MG., & 
Giannini, V. (2023). Organo-mineral fertilizer containing struvite from 
liquid digestate for Cucurbita pepo L. seedling production. Journal of 
Soil Science and Plant Nutrition, 23, 6707-6720. https://doi.org/10.1007/
s42729-023-01524-9
Moreno-Reséndez, A., Reyes-Carrillo, J.L., Preciado-Rangel, P., Ramírez-
Aragón, M.G., y Moncayo-Luján, M.R. (2019). Desarrollo de la 
calabacita (Cucurbita pepo L.) con diferentes fuentes de fertilización 
bajo condiciones de invernadero. Ecosistemas y Recursos Agropecuarios, 
6(16), 145-151. https://doi.org/10.19136/era.a6n16.1803
Neocleous, D., & Savvas, D. (2018). Modelling Ca
2+
 accumulation in soilless 
zucchini crops: Physiological and agronomical responses. Agricultural 
Water Management,  203, 197-206. https://doi.org/10.1016/j.
agwat.2018.03.017
Purquerio, L.F.V., Mattar, G.S., Duart, A.M., de Moraes, C.C., Araújo, H.S., & 
Santos, F.F.D. (2019). Growth, yield, nutrient accumulation and export 
and thermal sum of Italian zucchini. Horticultura Brasileira, 37, 221-227. 
http://dx.doi.org/10.1590/S0102-053620190214
Rodas-Gaitán, H.A., Rodríguez-Fuentes, H., Ojeda-Zacarías, Ma. del C., Vidales-
Contreras, J.A., y Luna-Maldonado, A.I. (2012). Curvas de absorción 
de macronutrientes en calabacita italiana  (Cucurbita pepo L.).  Revista 
Fitotecnia Mexicana, 35(5), 57–60. https://revistatotecniamexicana.org/
documentos/35-3_Especial_5/10r.pdf
Santos-Coello, B., y Ríos-Mesa, D. (2016). Cálculo de soluciones nutritivas en 
suelo y sin suelo. Servicio de Agricultura y Desarrollo Rural, Cabildo 
Insular de Tenerife, España, 113 pp. ISBN 978-84-15012-87-0
SDR. (2007). Cadenas productivas agropecuarias y acuícolas del Estado de 
Puebla. Secretaría de Desarrolla Rural, Gobierno del Estado de Puebla, 
México, pp. 89-90.
Seth, A.,  Gothelf,  R.,  &  Shenker,  M.  (2018).  The  K  to  (Ca  +  Mg)  ratio  eect 
on potassium availability for plants - splitting soil- from plant-related 
interactions. In: 20th EGU General Assembly, Geophysical Research 
Abstracts, Vienna, Austria, 20, p. 9425.
SIAP. (2023). Anuario estadístico de la producción agrícola. Servicio de 
Información Agroalimentaria y Pesquera, México. https://nube.siap.gob.
mx/cierreagricola/
Statgraphics Centurion XVI version 16.1.18 for Windows. ©StatPoint 
Technologies, Inc., 1982-2012, USA.
Villalobos, F.C., Mateos, L., Orgaz, F., y Fereres, E. (2009). Fitotecnia: Bases y 
tecnologías de producción agrícola. 2a edición, Editorial Mundi-Prensa. 
Madrid, España, 496 pp. ISBN 978-84-8476-037-5