This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
    Rev. Fac. Agron. (LUZ). 2025, 42(1): e254211 January-March. ISSN 2477-9409.
6-6 |
De La Guardia, L., de Miranda, J. H., & dos Santos Luciano, A. (2024). Assessment 
of  irrigation  water  use  for  dry  beans  in  center  pivots  using  Era5  land 
climate  variables  and  Sentinel-2  NDVI  time  series  in  the  Brazilian 
Cerrado. SSRN. https://doi.org/10.2139/ssrn.4917244
Del  Valle,  T.  M.,  &  Jiang,  P.  (2022).  Comparison  of  common  classication 
strategies  for  large-scale  vegetation  mapping  over  the  Google  Earth 
Engine platform. International Journal of Applied Earth Observation and 
Geoinformation, 115, 103092. https://doi.org/10.1016/j.jag.2022.103092
Eliades,  M.,  Bruggeman,  A.,  Djuma,  H.,  Christo,  C.,  &  Kuells,  C.  (2022). 
Quantifying  evapotranspiration  and  drainage  losses  in  a  semi-arid 
nectarine  (Prunus persica var. nucipersica)  eld  with  a  dynamic  crop 
coecient (Kc) derived from leaf area index measurements. Water, 14(5), 
734. https://doi.org/10.3390/w14050734
Elogne, A. G., Piponiot, C., Zo-Bi, I. C., Amani, B. H., Van der Meersch, V., & 
Hérault,  B.  (2023).  Life  after  re—Long-term  responses  of  20  timber 
species  in  semi-deciduous  forests  of  West Africa.  Forest Ecology and 
Management, 538, 120977. https://doi.org/10.1016/j.foreco.2023.120977
Fuentes-Peñailillo, F., Gutter, K., Vega, R., & Silva, G. C. (2024). Transformative 
technologies in digital agriculture: Leveraging Internet of Things, remote 
sensing, and articial intelligence for smart  crop  management. Journal 
of Sensor and Actuator Networks, 13(4),  39.  https://doi.org/10.3390/
jsan13040039
Ge, X., Ding, J., Jin, X., Wang, J., Chen, X., Li, X., & Xie, B. (2021). Estimating 
agricultural  soil  moisture  content  through  UAV-based  hyperspectral 
images  in  the  arid  region.  Remote Sensing, 13(8),  1562.  https://doi.
org/10.3390/rs13081562
Judge, J., Liu, P. W., Monsiváis-Huertero, A., Bongiovanni, T., Chakrabarti, S., 
Steele-Dunne,  S.  C.,  &  Cosh,  M.  (2021).  Impact  of  vegetation  water 
content information on soil moisture retrievals in agricultural regions: An 
analysis based on the SMAPVEX16-MicroWEX dataset. Remote Sensing 
of Environment, 265, 112623. https://doi.org/10.1016/j.rse.2021.112623
Ippolito, M., De Caro, D., Ciraolo, G., Minacapilli, M., & Provenzano, G. (2023). 
Estimating  crop  coecients  and  actual  evapotranspiration  in  citrus 
orchards with sporadic cover weeds based on ground and remote sensing 
data. Irrigation Science, 41(1), 5-22. https://doi.org/10.1007/s00271-022-
00829-4
Karunathilake,  E.  M.  B.  M.,  Le, A.  T.,  Heo,  S.,  Chung, Y.  S.,  &  Mansoor,  S. 
(2023).  The  path  to  smart  farming:  Innovations  and  opportunities  in 
precision  agriculture.  Agriculture, 13(8),  1593.  https://doi.org/10.3390/
agriculture13081593
Kganyago, M., Adjorlolo, C., Mhangara, P., & Tsoeleng, L. (2024). Optical remote 
sensing  of crop  biophysical  and  biochemical  parameters: An  overview 
of advances in sensor technologies and machine learning algorithms for 
precision  agriculture.  Computers and Electronics in Agriculture, 218, 
108730. https://doi.org/10.1016/j.compag.2024.108730
Khose, S. B., & Mailapalli, D. R. (2024). Spatial mapping of soil moisture content 
using  very-high  resolution  UAV-based  multispectral  image  analytics. 
Smart Agricultural Technology, 8,  100467.  https://doi.org/10.1016/j.
sat.2024.100467
Kumari, A., Singh, J., & Gupta, H. (2024). Multi-temporal analysis of vegetation 
extent  using  Google  Earth  Engine.  In  Natural  Resource  Monitoring, 
Planning and Management Based on Advanced Programming (pp. 29-45). 
Springer Nature Singapore. https://doi.org/10.1007/978-981-99-0643-5_2
Lemesios,  I.,  &  Petropoulos,  G.  P.  (2024).  Vegetation  regeneration  dynamics 
of  a  natural  Mediterranean  ecosystem  following  a  wildre  exploiting 
the  LANDSAT  archive,  Google  Earth  Engine,  and  geospatial  analysis 
techniques. Remote Sensing Applications: Society and Environment, 34, 
101153. https://doi.org/10.1016/j.rsase.2024.101153
Lobos, G., Veas, A., Balbontín, C., Muñoz, V., Franck, N., & Portilla, Á. (2017). 
Manejo hídrico en frutales bajo condiciones edafoclimáticas de Limarí y 
Choapa. Boletin INIA N° 355. Instituto de Investigaciones Agropecuarias 
de Chile. https://hdl.handle.net/20.500.14001/6619
Mc Feeters, S. K. (1996). The use of the Normalized Dierence Water Index (NDWI) 
in the delineation of open water features. International Journal of Remote 
Sensing, 17(7): 1425-1432. https://doi.org/10.1080/01431169608948714
Manfreda,  S.,  &  Dor,  E.  B.  (2023).  Remote  sensing  of  the  environment  using 
unmanned aerial systems. In Unmanned Aerial Systems for Monitoring 
Soil,  Vegetation,  and  Riverine  Environments  (pp.  3-36).  https://doi.
org/10.1201/9780367334232-1
Masi, M., Di Pasquale, J., Vecchio, Y., & Capitanio, F. (2023). Precision farming: 
Barriers of variable rate technology adoption in Italy. Land, 12(5), 1084. 
https://doi.org/10.3390/land12051084
Mehedi, I. M., Hanif, M. S., Bilal, M., Vellingiri, M. T., & Palaniswamy, T. (2024). 
Remote  sensing  and  decision  support  system  applications  in  precision 
agriculture:  Challenges  and  possibilities.  IEEE  Access. 
https://doi.
org/10.1109/ACCESS.2024.1234567
Munaganuri, R. K., & Yamarthi, N. R. (2024). PAMICRM: Improving precision 
agriculture through multimodal image analysis for crop water requirement 
estimation using multidomain remote sensing data samples. IEEE Access. 
https://doi.org/10.1109/ACCESS.2024.1234568
Pedroza-Parga,  E.,  Velásquez-Valle,  M.  A.,  Pedroza-Sandoval,  A.,  Sánchez-
Cohen, I., & Yáñez-Chávez, L. G. (2022). The impact of vegetation cover 
on soil erosion and soil deposition due to runo. Ingeniería agrícola y 
biosistemas, 14(1), 17-31. https://doi.org/10.5154/r.inagbi.2021.12.135
Terink, W.,  Lutz, A.  F.,  Simons,  G.  W.  H.,  Immerzeel, W. W.,  &  Droogers,  P. 
(2015). 
SPHY v2. 0: Spatial processes in hydrology. Geoscientic Model 
Development
,  8(7),  2009-2034.  https://doi.org/10.5194/gmd-8-2009-
2015
Toosi, A., Javan, F. D., Samadzadegan, F., Mehravar, S., Kurban, A., & Azadi, H. 
(2022). Citrus orchard mapping in Juybar, Iran: Analysis of NDVI time 
series and feature fusion of multi-source satellite imageries. Ecological 
Informatics
, 70, 101733. https://doi.org/10.1016/j.ecoinf.2022.101733
Sabie,  R.,  Bawazir,  A.  S.,  Buenemann,  M.,  Steele,  C.,  &  Fernald, A.  (2024). 
Calculating  Vegetation  Index-Based  Crop  Coecients  for  Alfalfa  in 
the Mesilla Valley, New Mexico Using Harmonized Landsat Sentinel-2 
(HLS)  Data  and  Eddy  Covariance  Flux  Tower  Data.  Remote Sensing, 
16(16), 2876. https://doi.org/10.3390/rs16162876
Yi,  W.,  Wang,  N.,  Yu,  H.,  Jiang,  Y.,  Zhang,  D.,  Li,  X.,  &  Xie,  Z.  (2024). An 
enhanced monitoring method for spatio-temporal dynamics of salt marsh 
vegetation  using  google  earth  engine.  Estuarine, Coastal and Shelf 
Science, 298, 108658. https://doi.org/10.1016/j.ecss.2024.108658
Wu,  Z.,  Cui,  N.,  Zhang,  W.,  Yang,  Y.,  Gong,  D.,  Liu,  Q.,  &  Zhu,  B.  (2024). 
Estimation of soil moisture in drip-irrigated citrus orchards using multi-
modal  UAV  remote  sensing.  Agricultural Water Management, 302, 
108972. https://doi.org/10.1016/j.agwat.2024.108972