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Abstract

With the objective of applying remote sensing techniques for 
crop coefficient estimation and detection of changes in forest cover, 
in order to generate information that contributes to the sustainable 
management of agricultural and forestry resources, a study was 
conducted based on the theoretical foundations of agriculture 4.0, 
through the implementation of advanced technologies and intelligent 
data integration to optimize the entire agricultural production cycle. 
The methodology adopted includes the capture and processing 
of multispectral images from satellite platforms and unmanned 
aerial vehicles (UAVs), in order to obtain geometric and spectral 
information on various crops. Calculations of spectral indices 
(NDVI, NDMI, NDWI, Kc) and analysis of forest stand losses 
were performed using advanced software tools in GIS environment 
and the Google Earth Engine platform. The drone images made 
it possible to calculate the NDWI to classify soil moisture in 
high, moderate and low levels. Satellite images facilitated the 
identification of relationships between crop evaporation coefficient 
(Kc) and climatic parameters, as well as the detection of areas 
with forest losses in the Carrizal river basin. The results suggest 
strategies for the development of precision agriculture activities, 
promoting the substitution of conventional practices for sustainable 
development mechanisms based on geospatial technologies. This 
study contributes to the literature by demonstrating the application 
of advanced geospatial technologies to optimize agricultural 
production and sustainability.
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Resumen 

Con el objetivo de aplicar técnicas de teledetección para la 
estimación del coeficiente del cultivo y la detección de cambios 
en la cobertura boscosa, de tal manera de generar información que 
contribuya al manejo sostenible de los recursos agrícolas y forestales 
se realizó un estudio con base en los fundamentos teóricos de la 
agricultura 4.0, mediante la implementación de tecnologías avanzadas 
y la integración inteligente de datos para optimizar el ciclo completo 
de producción agrícola. La metodología adoptada incluye la captura 
y procesamiento de imágenes multiespectrales provenientes de 
plataformas satelitales y de vehículos aéreos no tripulados (UAV), 
con el fin de obtener información geométrica y espectral de diversos 
cultivos. Se realizaron cálculos de índices espectrales (NDVI, NDMI, 
NDWI, Kc) y análisis de pérdidas de masas forestales utilizando 
herramientas avanzadas de software en ambiente GIS y la plataforma 
Google Earth Engine. Las imágenes de drones permitieron calcular 
el NDWI para clasificar la humedad del suelo en niveles alto, 
moderado y bajo. Por su parte las imágenes satelitales facilitaron 
la identificación de relaciones entre el coeficiente de evaporación 
del cultivo (Kc) y los parámetros climáticos, así como la detección 
de áreas con pérdidas de bosque en la cuenca del río Carrizal. Los 
resultados sugieren estrategias para el desarrollo de actividades en 
agricultura de precisión, promoviendo la sustitución de prácticas 
convencionales por mecanismos de desarrollo sostenible basados 
en tecnologías geoespaciales. Este estudio aporta a la literatura al 
demostrar la aplicación de tecnologías geoespaciales avanzadas para 
optimizar la producción agrícola y la sostenibilidad.

Palabras clave: índices espectrales, Kc, detección de cambios, UAV, 
GEE.

Resumo

Com o objetivo de aplicar técnicas de sensoriamento remoto para 
a estimativa do coeficiente de culturas e a detecção de mudanças 
na cobertura florestal, a fim de gerar informações que contribuam 
para o gerenciamento sustentável dos recursos agrícolas e florestais, 
foi realizado um estudo com base nos fundamentos teóricos da 
agricultura 4.0, por meio da implementação de tecnologias avançadas 
e da integração inteligente de dados para otimizar todo o ciclo de 
produção agrícola. A metodologia adotada inclui a captura e o 
processamento de imagens multiespectrais de plataformas de 
satélite e veículos aéreos não tripulados (VANTs), a fim de obter 
informações geométricas e espectrais de várias culturas. Os cálculos 
dos índices espectrais (NDVI, NDMI, NDWI, Kc) e a análise das 
perdas de povoamentos florestais foram realizados por meio de 
ferramentas de software avançadas em um ambiente de SIG e na 
plataforma Google Earth Engine. As imagens de drones permitiram 
que o NDWI fosse calculado para classificar a umidade do solo em 
níveis altos, moderados e baixos. As imagens de satélite facilitaram a 
identificação das relações entre o coeficiente de evaporação da cultura 
(Kc) e os parâmetros climáticos, bem como a detecção de áreas com 
perda de floresta na bacia do rio Carrizal. Os resultados sugerem 
estratégias para o desenvolvimento de atividades de agricultura de 
precisão, promovendo a substituição de práticas convencionais 
por mecanismos de desenvolvimento sustentável baseados em 
tecnologias geoespaciais. Este estudo contribui para a literatura ao 
demonstrar a aplicação de tecnologias geoespaciais avançadas para 
otimizar a produção agrícola e a sustentabilidade.

Palavras-chave: índices espectrais, Kc, detecção de mudanças, UAV, 
GEE.

Introduction

Recent advances in geospatial technologies provide new options 
in agricultural sciences (Fuentes-Peñailillo et al., 2024; Masi et 
al., 2023). According to Kganyago et al. (2024) and Karunathilake 
(2023), remote sensing has the potential to evolve adaptive 
agricultural practices by providing continuous information on crop 
status at various scales. This is especially crucial in a context of 
historically generated weather patterns on land. However, in Ecuador, 
where a large part of the population depends on agricultural activities, 
research in these areas is scarce.

One of the challenges facing remote sensing is the analysis of crop 
moisture. Basharat et al. (2023), Chen and Liu (2020), and Mehedi 
et al. (2024) explored low-cost geospatial techniques to increase 
agricultural yields and reduce environmental impact. 
Quantification of ‘plant water stress’ is proposed as an indicator to 
improve irrigation practices by considering the interaction between 
soil water availability, atmospheric demand and plant physiology.

Munaganuri and Yamarthi (2024) proposed an innovative 
approach based on remote sensing and artificial intelligence to 
optimise irrigation, using convolutional neural networks to classify 
remotely sensed images and capture crop water requirements. 
Unmanned aerial vehicles (UAVs) have also been used extensively 
in precision agriculture. Manfreda and Dor (2023) provided a review 
on the history, commercial, social aspects and current applications of 
UAVs in agriculture. Work has also been developed for the estimation 
of crop Kc from the Leaf Area Index (LAI) to improve water balance 
calculations (Eliades et al., 2022).

Soil moisture has been studied using multispectral UAV and 
satellite imagery, together with artificial intelligence algorithms. Bai 
et al. (2021), Datta and Faroughi (2023) and Ge et al. (2021) presented 
research that has advanced soil moisture prediction at various depths. 
Wu et al. (2024) were able to predict moisture at 5, 10, 20 and 40 
cm depth in citrus orchards using multi-modal remotely sensed UAV 
data. Khose and Mailapalli (2024) confirmed that the ratio vegetation 
index (RVI) has the greatest potential for estimating surface soil 
moisture using UAV imagery and machine learning algorithms.

In the context of remote sensing, several satellites orbit the Earth 
providing multispectral images. In this research, Sentinel-2 imagery, 
available through the European Space Agency’s Copernicus platform, 
was used. De la Guardia et al. (2024) used Sentinel-2 and ERA-5 
Land data to calculate the evapotranspiration of a bean crop in Brazil. 
Sabie et al. (2024) used Landsat Sentinel-2 (HLS) data to calculate 
crop coefficients and estimate evapotranspiration at the field level, 
with high agreement between calculations and field data.

In addition, cloud computing elements were considered to 
analyse multi-temporal datasets such as MODIS Land Cover Type 
(MCD12Q1) and Hansen Global Forest Change (2000-2021) products 
in monitoring the dynamics of different forest types and canopy cover, 
facilitating image identification and calculation of multi-temporal 
spectral indices. Del Valle and Jiang (2022), Kumari et al. (2024), 
Lemesios and Petropoulos (2024) and Yi et al. (2024) highlighted 
the importance of the Google Earth Engine (GEE) platform for the 
identification of multi-temporal images of vegetation types and forest 
cover, using historical remotely sensed data.

Considering the potential of these geospatial technologies in 
agriculture, the objective of this study was to apply remote sensing 
techniques for crop coefficient estimation and forest cover change 
detection in order to generate information that contributes to the 
sustainable management of agricultural and forestry resources.
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Materials and methods

Location of the study area
The research was carried out in agricultural sectors of the Province 

of Manabí, Ecuador (Figure 1). 
Traditional crops of the region and forested areas located within 

the Portoviejo and Carrizal Chone river basins were selected.

cloud cover (<30 %), focusing on a lemon crop in Santa Ana, Manabí. 
The images were processed in ArcGIS, calculating spectral indices 
(Table 1) with map algebra tools, providing relevant information on 
vegetation and crop conditions. 

Table 1. Spectral indices calculated with the multispectral images.

Index name Formula Reference

Normalised Difference 
Vegetation Index NDVI Toosi, et al. (2022)

Normalised Difference 
Humidity Index NDMI Mc Feeters (1996)

Normalised Water Differential 
Index NDWI Mc Feeters (1996)

Evapotranspiration Kc Terink et al. (2015)

Soil and crop water conditions
ArcGIS software tools were used to analyse the green, red, red-

edge and near-infrared bands captured by the eBee SQ agricultural 
drone (SenseFly, Switzerland). Moisture indices (NDMI and MDWI) 
and crop evaporation coefficient (Kc) were calculated using the 
equations shown in Table 1. The indices and Kc were calculated 
for each 10 m resolution cell, using the multispectral bands of the 
Sentinel image, and then averaged for each plot, according to crop. 
Subsequently, descriptive statistical analyses of the indices were 
carried out to assess the water conditions of the soils and crops.

Climatological conditions
Data from the La Teodomira Meteorological Station, belonging to 

the hydrometeorological network of the Portoviejo river basin of the 
National Institute of Meteorology and Hydrology of Ecuador, were 
analysed.

Loss of forest masses
Using the Google Earth Engine platform, a JavaScript code was 

programmed to analyse forest stand loss. The Hansen Global Forest 
Change 2000-2023 collection was accessed, which provided layers 
on forest cover (trees over 5 metres), vegetation loss (Loss) and 
gain (Gain). The affected area was quantified and represented on a 
thematic map, assessing its influence on erosion processes.

Results and discussion

Close remote sensing
As a result of this research, high-precision photogrammetric 

products with a resolution of 2 cm.pixel-1 were generated. The data 
obtained allowed the production of orthophotos, spectral bands, point 
clouds and digital terrain and surface models.

Soil and crop water conditions
The orthophoto (Figure 2a) shows a soil under different moisture 

conditions, partially covered by pine nut and cocoa crops. Normalised 
Difference Wetness Index (NDWI) values (Figure 2b) ranged from 
-0.530059 to -0.866279, where minimum values represent vegetation, 
intermediate values indicate soils with high or moderate moisture, 
and maximum values reflect dry soil (Table 2).

The Natural Breaks method, built into Arcgis tools, is based on 
natural groupings inherent in the data. Classes are created so that 
similar values are grouped together and differences between classes 
are maximised. 

b

Figure 1. Location of the study area in the Province of Manabí, 
Ecuador.

 Photogrammetric flight for the capture of aerial images  
On September 17, 2023, in the middle of the dry season for the 

study area, in the Ecuadorian coastal region, a photogrammetric flight 
was carried out over an area of approximately 10 ha. The Ebee SQ 
Agricultural Drone (SenseFly, Switzerland) was used, instrumented 
with the Parrot Sequoia multispectral camera, which captures RGB 
images and the green, red, red edge and near infrared bands. The flight 
was planned with Emotion AG software, where the area of interest, 
flight path, height at 95 metres above the ground and an overlap of 80 
% between the photographs were defined. At the end of the flight, the 
data were downloaded and the images were processed in the PIX4D 
photogrammetry software to generate orthomosaics, point clouds, 
spectral bands, digital terrain and surface models.  

Six ground control points (GCP) were defined to support the 
photogrammetric flight. The points were distributed strategically, 
uniformly covering the flight area to guarantee adequate precision 
in the adjustment of the images obtained. To obtain the precise 
coordinates of the control points, RTK (Real-Time Kinematic) 
equipment (Topcon model GR-5, Japan) was used, which allowed 
centimetric precision to be achieved in the location of the points. The 
coordinates were registered in the geodetic system with the support 
of the permanent station REGME POEC 42008M003, located in 
Portoviejo, guaranteeing consistency with the official cartography of 
Ecuador and remote sensing data.

The GCPs were manually entered into the project, specifying their 
precise coordinates obtained with the high precision GPS. Within 
Pix4D, the GCPs were manually marked on various images where 
they were visible to correctly align and georeference the model, 
adjusting the positions of the images according to the control points.

Downloading Sentinel 2 imagery
Sentinel-2 imagery was downloaded from the Copernicus Open 

Access Hub, selecting parameters such as date, geographic extent and 
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Table 2. Reclassification of the normalised difference humidity 
index.

Color NDWI  
Range Clasification

≤ -0.593540 Vegetation

    -0.593540
    -0.517160 Soil with high humidity

    -0.517160 
    -0.435378 Soil with moderate moisture

≥ -0.435378 Dry soil

Features are divided into classes whose boundaries are set where 
there are relatively large differences in data values. In this case it was 
verified by fieldwork and visual interpretation of the orthophoto, that 
the classes defined in Table 2 correspond to the coverages visualised 
in the verification.

The method of classification of natural changes (Natural 
Breaks) made it possible to differentiate the coverages according to 
the NDWI ranges. These results are in agreement with the studies 
of Chandramohan et al. (2024) and Judge et al. (2021), who used 
different data sources to measure soil moisture.

Remote sensing 
Sentinel 2 images (Figure 2a) were found with cloud cover below 

30 % for 11 months of the year, allowing NDVI to be calculated 
(Figure 3b). 

Figure 2. a) RGB photo ortho generated by Pix4D software and b) 
Normalised Difference Wetness Index (NDWI).

Crop evapotranspiration coefficient of lemon crops
The crop coefficient (Kc) reflects the water requirements at each 

stage of lemon development, and is key for irrigation planning and 
design in the studied area. For a comprehensive understanding of the 
data, in terms of the inter-annual variability of Kc, it is essential to 
consider its relationship with the phenological stages of the crop and 
how these are affected by the annual weather conditions.

The data in Table 3 show the interannual variations of Kc for the 
lemon crop, highlighting the month of March with 0.25 indicating 
the lowest water requirements, for the final months of harvest or the 
beginning of a new phase of vegetative development, when the crop 
reduces its transpiratory activity, as the fruits have been removed and 
there is a period of recovery.

On the other hand, the maximum Kc value (0.62) was recorded 
during August, indicating high water requirements in conditions of 
low rainfall and high evapotranspiration, in addition to the fact that 
the crop is in a critical phase of fruit development, where a peak in Kc 
is observed due to the high water demand to sustain the rapid growth 
of the fruit.

The decrease in Kc values during September to November is 
explained by the fact that the crop is generally at an advanced stage 
of fruit development or ripening. As the fruits reach the right size and 
enter the ripening stage (September to November), vegetative growth 
decreases, reducing transpiration and hence Kc.

The variation of the crop coefficient (Kc) throughout the year is 
crucial for optimising agricultural irrigation scheduling. This parameter, 
which reflects the ratio between reference evapotranspiration (ETo) 
and crop evapotranspiration, varies according to rainfall, temperature 
and plant development stage, allowing irrigation to be adjusted more 
efficiently (Das et al., 2023).

According to Lobos et al. (2017) the water demand of a crop is 
mainly determined by two factors, the climatic conditions of the sector 
and the level of development of the plants. The development stage of 
the crop is defined by the crop coefficient (Kc), which indicates the 
water consumption of a plant according to its phenological stage. 

Toosi et al. (2022) report a good number of investigations that relate 
the Kc with the phenological development of the crop, highlighting 
that the crop coefficient (Kc) varies significantly throughout its 
phenological cycle, as it reflects the water needs of the crop according 
to its development. For lemon during the early stages, such as initial 
growth and vegetative development, the Kc is low due to the limited 
water demand of the young plants. As the crop progresses to active 
growth and ripening stages, Kc increases, reflecting a higher water 
demand caused by increased transpiration and photosynthesis. 

In this context, the use of the normalised difference vegetation 
index (NDVI) has been consolidated as an effective tool to estimate 
the Kc of lemon at different phenological stages. This is because NDVI 

Table 3. Climatic data from the INAMHI Teodomira Station and crop coefficient (Kc), calculated with the multispectral bands of the 
Sentinel image.

Month Jan Feb Mar Apr May Jun Aug Sep Oct Nov Dec

Prec (mm) 83.9 92.6 217.4 47.3 32 1.7 0.3 0.6 0.2 0 33.3

Temp (°C) 27.35 26.65 27.75 27.75 26.75 26.65 26.75 26.35 26.5 25.85 26.3

Hum (%) 80 83 84 84 85 84 83 80 79 78 78

Eva (mm) 99 85 130.2 120 89.6 91.7 115.5 137.6 144.3 134.5 122.4

NDVI                       0.91 0.57 0.36 0.49 0.59 0.48 0.42 0.47 0.47 0.32 0.31

Lemon Kc 0.40 0.26 0.25 0.41 0.32 0.39 0.62 0.37 0.35 0.38 0.41

Figure 3. a) Sentinel 2 image and b) NDVI for the study area in 
Manabí Province, Ecuador.

a b
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measures the amount and vigour of vegetation, correlating directly 
with the level of evapotranspiration and hence with the Kc of the 
crop. Recent research has shown that there is a significant correlation 
between NDVI values and Kc in lemons, especially during the active 
growth and ripening stages, allowing for more accurate and efficient 
water management (Ippolito et al., 2023).

Forest cover loss 
Figure 4 shows, in red polygons, the areas where losses of 

vegetation cover were recorded, according to the calculations made 
in the Hansen Global Forest Change collection for the period 2000-
2023. The sum of the area of the polygons with forest stand loss 
resulted in 58 km², which represents 21 % of the native forest stand 
in the study area, located in the upper and middle parts of the Carrizal 
river basin. 

Figure 4. Spatial distribution of forest cover loss in the Carrizal 
river basin.

The loss of vegetation cover found in this study is directly related 
to deforestation, associated with the expansion of the agricultural 
frontier, which has profoundly affected hydrological processes, 
reducing the capacity of the basins to regulate the water cycle.

The loss of these 58 km² of forest could be influencing the 
reduction of water retention capacity in the forest, increasing surface 
runoff and the risk of erosion and flash floods (Elogne et al., 2023).

Additionally, considering the reports of Pedroza-Parga et 
al. (2022), a significant increase in soil erosion due to the loss of 
vegetation mass can be expected. According to the authors, areas with 
vegetation loss show a sediment erosion of 58.6 t.ha-1, while areas 
with intact vegetation show lower values of approximately 26.3 t.ha-1. 

These results underline that vegetation on the soil surface helps 
to reduce flow velocity and particle removal, confirming that proper 
vegetation management positively influences hydrological processes, 
particularly infiltration, runoff and topsoil protection.

In the Carrizal river basin, the loss of forest cover is driving 
erosion in the upper and middle reaches of the drainage sub-basins. 
The resulting erosive processes generate large amounts of sediment 
that accumulate in the drainage network and reach the mouth of the 
Chone River estuary in Bahía de Caráquez. This accumulation of 
sediments in the watercourses has diverse hydrological consequences, 
affecting the dynamics of the ecosystems and the safety of the 
hydraulic infrastructure.

Strategies for precision agriculture
Remote sensing-based precision agriculture offers a key 

opportunity to improve the agricultural sector in the province of 

Manabí, Ecuador. This technology allows continuous monitoring of 
crops, using satellite imagery to detect problems such as water stress 
and deforestation. By obtaining accurate data on crop health, cover 
and water conditions, farmers can make informed decisions to apply 
inputs more efficiently, optimising the use of resources such as water 
and fertilisers.

In addition, remote sensing facilitates agricultural planning by 
being a tool for analysing soil conditions, which can help identify 
critical areas, providing real-time information that enables preventive 
measures to be implemented. In this way, the technology improves 
decision-making and the competitiveness of the sector, favouring 
more sustainable practices and increasing farmers’ resilience.

Conclusions

Close remote sensing with unmanned aerial vehicles (UAVs) was 
very useful in generating very high spatial resolution orthophotos of 
the order of 2 cm.pixel-1, which can be a very useful input in decision 
making related to the optimal use of water resources.

Normalised Difference Wetness Index (NDWI) values, calculated 
with spectral bands from a photogrammetric flight, ranged from -0.53 
to -0.86, where minimum values represent vegetation, intermediate 
values represent high and moderate moisture soils, and maximum 
values represent dry soil.

The minimum (0.23) and maximum (0.62) Kc values for the lemon 
crop indicate the water consumption needs of the plant according to its 
phenological stage, with the minimum value coinciding with the final 
stage of harvest and the maximum with the time of fruit development.  
Remote sensing was optimal for the analysis of environmental 
conditions through the use of multispectral images from the Sentinel 
2 satellite. 

The Carrizal river basin has experienced a substantial loss of 
forest mass of 58 km2, representing a 21 % decrease in native forest 
over a 20-year period. 

The monitoring of agricultural activities and environmental 
conditions, using remote sensing techniques, integrates data sets that 
allow the various stakeholders to make informed, optimal and timely 
decisions in time and space to promote the sustainable development 
of the region.
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