This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
    Rev. Fac. Agron. (LUZ). 2024, 41(4): e244141 October-December. ISSN 2477-9407.
6-7 |
the associated biotic and abiotic environment can aect the activities 
of  Trichoderma  (Cano, 2015).  It  is dicult  to  predict the  outcome 
of  interactions  between  plants  and  benecial  soil  microorganisms, 
since the response of plants to inoculation varies depending on 
the functional and biochemical compatibilities of the interaction. 
Therefore, further research is required in Mexico to corroborate the 
eectiveness  of  strains  with  phosphorus  solubilizing  potential  to 
develop technological packages  for successful application in coee 
cultivation.  Trichoderma strains may be one of the most important 
alternatives  to  chemical  fertilizers  that  can  have  negative  eects 
on human health and the environment. It is recommended that 
future studies explore the possibility of promoting these isolates as 
biofertilizers to improve phosphorus nutrition in multiple crops.
Conclusions
Two  strains  of  T. harzianum  (Th53  y  Th48)  from  coee 
plantations are potentially important for plant development, as well 
as for the solubilization of insoluble phosphorus. These strains 
favored the availability of phosphorus in vitro in the presence of 
calcium phosphate (Ca
2
PO
4
) as well as a higher phosphorus content 
in the substrate of the three coee varieties (Anacafe, Costa Rica and 
Marsellesa). For its part, T. harzianum (Th48) promoted the height 
of the Anacafé and Marsellesa varieties. The T. asperellum strains 
(Th40,  Th49,  and  Th57)  were  the  best  at  solubilizing  aluminum 
phosphate (AlPO
4
); this was only evaluated under in vitro conditions, 
so it is recommended to continue with the tests in coee seedlings. 
It would be interesting to evaluate other coee variables, as well as 
more phosphorus-solubilizing strains and evaluate other agronomic 
variables. It is also recommended to evaluate plant phosphorus 
acquisition through whole-plant phosphorus analysis. Field survival 
tests are also necessary to evaluate the activity of these fungi in 
dierent environmental conditions. It also deserves further research 
to evaluate the eect of the application of Trichoderma consortia and 
with consortia of other microorganisms such as mycorrhizae on the 
mechanisms of phosphor mobilization. The results presented here are 
a basis for the development of future study aimed at the use of native 
and  properly  identied  Trichoderma  strains  in  coee  farming  and 
inuencing  the  use  of  biofertilizers  as  an  environmentally  friendly 
strategy that also favors the production of organic coee since it has 
a better position in the market and thus favors the economy of coee 
producers in the region. It is suggested to continue the exploration of 
the selection of strains with high potential to solubilize both calcium, 
aluminum and iron phosphate, continue testing on application 
methods and promote integration with other sustainable practices.
Funding
This study was funded by COVEICYDET Project 131627.
Acknowledgments
The authors thank Alondra Guadalupe Martínez Santos and María 
del Rosario Gregorio Cipriano for their support in the molecular 
identication of the strains.
Literature cited
Arias, R. M., & Heredia, G. (2014). Fungal diversity in coee plantation systems 
and in a tropical montane cloud forest in Veracruz, Mexico. Agroforestry 
systems, 88, 921-933. https://doi.org/10.1007/s10457-014-9736-z
Arias, R. M., Heredia, G., Perea-Rojas, Y. del C., de la Cruz, E.Y., & García G. K. 
Y. (2023). Selection and characterization of phosphate-solubilizing fungi 
and their eects on coee plantations. Plants, 12(19), 3395. https://doi.
org/10.3390/plants12193395
Arias, R. M., Juárez, G.A.,  Heredia, G., & de la Cruz,  E. Y.  (2022). Capacidad 
fosfato solubilizadora de hongos rizosféricos provenientes de cafetales de 
Jilotepec, Veracruz. Alianzas y Tendencias BUAP, 7(27), 6986. http://doi.
org/10.5281/zenodo.7094878
Bader, A. N., Salerno, G. L., Covacevich, F., & Consolo, V. F. (2020). Native 
Trichoderma harzianum strains from Argentina produce indole-3 
acetic  acid  and  phosphorus  solubilization,  promote growth  and control 
wilt  disease  on  tomato  (Solanum lycopersicum L.). Journal of King 
Saud University Science, 32(1), 867–873. https://doi.org/10.1016/j.
jksus.2019.04.002
Bononi,  L.,  Chiaramonte,  J.  B.,  Pansa,  C.  C.,  Moitinho,  M.  A.,  &  Melo,  I.  S. 
(2020). Phosphorus-solubilizing Trichoderma spp. from Amazon soils 
improve  soybean plant  growth.  Scientic  Reports,  10(1), 2858. https://
doi.org/10.1038/s41598-020-59793-8
Bray,  R.  H.,  &  Kurtz.  L.  T.  (1945).  Determination  of  total,  organic  and 
available forms of phosphorus in soil. Soil Science, 59, 39-45. 
DOI:10.1097/00010694-194501000-00006
Cano, M. 2015. Interacción de microorganismos benécos en plantas: Micorrizas, 
Trichoderma  spp. y Pseudomonas spp. una revisión. Revista  U.D.C.A 
Actualidad & Divulgación Cientíca, 14(2), 15-31.
Chagas, L. F. B., De Castro, H. G., Colonia, B. S. O., De Carvalho Filho, M. R., 
Miller,  L.  D.  O.,  &  Chagas, A.  F. J. (2016). Eciency of Trichoderma 
spp. as a growth promoter of cowpea (Vigna unguiculata) and analysis 
of phosphate solubilization and indole acetic acid synthesis. Brazilian 
Journal of Botany, 39(2), 437-445. https://doi.org/10.1007/s40415-015-
0247-6
Clesceri, S., Greenberg, A., & Trusell, R. (1992). Métodos normalizados para el 
análisis de aguas potables y residuales. 17th ed. Madrid: Ediciones Díaz 
de Santos.
Galeano, R.  M.  S.,  Ribeiro, J. V.  S.,  Silva,  S. M., de Oliveira-Simas, A.  L.,  de 
Alencar-Guimarães, N. C., Masui, D. C., Corrêa, B. O., Giannesi, G. C., 
Ferreira de Lima, S., da Silva-Brasil, M., & Zanoelo, F. F. (2024). New 
strains of Trichoderma  with  potential  for  biocontrol  and  plant  growth 
promotion  improve  early  soybean  growth  and  development.  Journal 
Plant  Growth  Regulation,  43, 4099–4119. https://doi.org/10.1007/
s00344-024-11374-z
Gams, W.,  & Bissett,  J.  (2002). Morphology and  identication  of Trichoderma 
Vol 1. Basic biology, taxonomy and genetics. In  P.  C. Kubicek & G. E. 
Harman (Eds.), Trichoderma and Gliocladium (pp. 3-31). Taylor and 
Francis.
Geissert, D., & Ibañez, A. (2008). Calidad y ambiente físico-químico de los 
suelos.  In  R.  Manson,  V.  Hernández-Ortiz, S.  Gallina  &  K.  Mehltreter 
(Eds.),  Agrosistemas cafetaleros de Veracruz: Biodiversidad, Manejo y 
Conservación  (pp. 213-221). Instituto de Ecología, A.C. (INECOL) e 
Instituto Nacional de Ecología (INE-SEMARNAT).
Hernández-Leal, T. I., Carrión, G., & Heredia, G. (2011). In vitro phosphate 
solubilization by a strain of Paecilomyces lilacinus (Thom) Samson. 
Agrociencia, 45(8),  881-892.  https://www.scielo.org.mx/scielo.
php?pid=S1405-31952011000800003&script=sci_abstract&tlng=en
Huerta, P. G., & Holguín, M. (2019). La microbiota del cafetal, modulador del 
daño producido por insectos y enfermedades. In B. E. Bello, L. Soto 
Pinto, P. G. Huerta, R. J. Gómez (Eds.), Caminar el cafetal: perspectivas 
socioambientales  del  café  y  su  gente  (pp. 49-64). El Colegio de la 
Frontera Sur. https://biblioteca.ecosur.mx/cgi-bin/koha/opac-retrieve-le.
pl?id=29766d1b642f4ea743b565b20e9216
Kaissoumi, H. E. L., Berbera, F., Mouden, N., OuazzaniChandi, A., Ouazzani, T. 
A.,  Selmaoui,  K.,  Benkirane,  R., &  Douira, A. (2024).  Tomato  growth 
promotion by Trichoderma asperellum laboratory-made bioproduct. In 
M. Azrour,  J.  Mabrouki  & A.  Guezzaz.  (Eds.),  Sustainable  and  Green 
Technologies for Water and Environmental Management (pp. 161-171). 
World Sustainability Series. Springer, Cham. https://doi.org/10.1007/978-
3-031-52419-6_13 
Kribel,  S.,  Qostal,  S.,  Ouazzani-Touhami,  A.,  Selmaoui,  K.,  Chliyeh,  M., 
Benkirane, R., Achbani, E. H., & Douira, A. (2019). Qualitative and 
quantitative estimation of the ability of Trichoderma  spp. Moroccan 
isolates to solubilize tricalcium phosphate. Plant Cell Biotechnology and 
Molecular Biology, 20 (7-8), 275-284.  DOI: 10.1556/038.54.2019.016 
Li, R. X., Cai, F., Pang, G., Shen, Q. S., Li, R., & Chen, W. (2015). Solubilisation 
of phosphate and micronutrients by Trichoderma harzianum and its 
relationship with the promotion of tomato plant growth. PLoS One, 10(6), 
e0130081. https://doi.org/10.1371/journal.pone.0130081
Liebersbach, H., Steingrobe, B., & Claassen, N. (2004). Roots regulate ion transport 
in the rhizosphere to counteract reduced mobility in dry soil. Plant and 
Soil, 260, 79-88. https://doi.org/10.1023/B:PLSO.0000030191.92338.6a
Menezes-Blackburn, D., Paredes, C., Zhang, H., Giles, C. D., Darch, T., Stutter, 
M.,  George,  T.  S.,  Shand,  C.,  Lumsdon,  D.,  Cooper,  P.,  Wendler,  R.,