This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
 Chillpa-Sencia et al. Rev. Fac. Agron. (LUZ). 2024 41(4): e244135
6-7 |
have anti-nutritional quality factors (Colombino et al., 2023), which 
inuence  the  utilization  of  its  nutrients  mainly  in  growing  guinea 
pigs. The digestibility of non-starch polysaccharides is aected by a 
multitude of factors, including animal species, age groups of animals, 
solubility, chemical structure, and their quantity in the diet (Valentine 
et al., 2017). 
In  this  case,  the age  of  the  guinea pigs  had  a  marked eect  on 
the digestibility of nutrients and energy in the diets and FSBM, 
determining that the values of digestible energy were higher for adult 
guinea pigs  than  in  growing, attributable to  the  dierences  in  their 
physiological development of the gastrointestinal tract. Therefore, the 
digestive capacity, enzymatic production, and fermentation capacity 
would not have been sucient to achieve the best use of nutrients and 
energy (Fernández et al., 1986; Sciellour et al., 2018). Similar eects 
were observed in pigs, where digestibility of NSP increases with the 
age of animals since grower and nisher pigs can utilize dietary ber 
better than young piglets (Sciellour et al., 2018).
Conclusions
The digestibility of dry matter and nutrients in full-fat soybean 
meal are high, exhibiting greater values in adults than in growing. 
The inclusion level of full-fat soybean meal in the diets aected the 
digestibility of nutrients, being higher with high levels, associated 
with  the  high  crude  protein,  and  fat  content  and  lower  ber.  The 
digestible  energy  of  full-fat  soybeans  was  dierent  between  the 
ages, being 3,093 and 3,375 kcal.kg
-1
 DM, with 46 % and 51 % of 
digestibility for growing and adult guinea pigs respectively.
Literature cited
Arjona-Smith, M., Chino, V. L. B., Moscoso-Muñoz, J. E. (2022). Evaluación del 
contenido de aminoácidos de la harina de soya para alimentación avícola 
y porcina, de acuerdo con el país de origen. Revista Investigaciones 
Agropecuarias 4(2), 109–120.https://revistas.up.ac.pa/index.php/
investigaciones_agropecuarias/article/view/2932 
Baker, K. M., Liu, Y., & Stein, H. H. (2014). Nutritional value of soybean meal 
produced from high protein, low oligosaccharide, or conventional 
varieties of soybeans and fed to weanling pigs. Animal Feed Science and 
Technology, 188, 64–73. https://doi.org/10.1016/j.anifeedsci.2013.10.018 
Castro-Bedriñana, J., & Chirinos-Peinado, D. (2021). Nutritional value of some 
raw materials for Guinea pigs (Cavia porcellus) feeding. Translational 
Animal Science, 5(2), 1–11. https://doi.org/10.1093/tas/txab019 
Cheeke Farías-kovac, C., Nicodemus, N., Delgado, R., Ocasio-vega, C., Noboa, 
T., Abdelrasoul,  R. A.  S.,  Carabaño,  R.,  &  García,  J.  (2020).  Eect  of 
dietary insoluble and soluble bre on growth performance, digestibility, 
and nitrogen, energy, and mineral retention eciency in growing rabbits. 
Animals, 10(8), 1–19. https://doi.org/10.3390/ani10081346 
Chiou, P. W. S., Yu, B., & Kuo, C. Y. (2000). Comparison of digestive function 
among rabbits, guinea pigs, rats, and hamsters. I. Performance, 
digestibility, and rate of digesta passage. Asian-Australasian Journal 
of Animal Sciences, 13(11), 1499–1507. https://doi.org/10.5713/
ajas.2000.1499 
Classen, H. L. (2017). Diet energy and feed intake in chickens. Animal 
Feed Science and Technology, 233, 13-21. https://doi.org/10.1016/j.
anifeedsci.2016.03.004
Colombino, E., Karimi, M., Nu, M. A. T., Tilatti, A. A., Sara Bellezza Oddon, 
Calini, F., Bergamino, C., Fiorilla, E., Gariglio, M., Gai, F., Capucchio, 
M. T. Schiavone, A., Gasco, L.,  Biasato,  I. (2023). Eects of  feeding a 
thermomechanical, enzyme-facilitated, coprocessed yeast and soybean 
meal on growth performance, organ weights, leg health, and gut 
development of broiler chickens, Poultry Science, 102(5) 102578. https://
doi.org/10.1016/j.psj.2023.102578.
Crowley, E. J., King, J. M., Wilkinson, T., Worgan, H.J., Huson, K.M., Rose, M. 
T., McEwan, N. R. (2017). Comparison of the microbial population in 
rabbits and guinea pigs by next generation sequencing. PLoS ONE 12(2): 
e0165779. https://doi.org/10.1371/journal.pone.0165779 
Degola, L., Sterna, V., Jansons, I., & Zute, S. (2019). The nutrition value of 
soybeans grown in Latvia for pig feeding. Agronomy Research, 17(5), 
1874–1880. https://doi.org/10.15159/ar.19.158 
Díaz Céspedes, M., Rojas Paredes, M. A., Hernández Guevara, J. E., Linares 
Rivera, J. L., Durand Chávez, L. M., & Moscoso-Muñoz, J. E. M. 
(2021). Digestibilidad, energía digestible y metabolizable del sacha inchi 
(Plukenetia volubilis L.) peletizado y extruido en cuyes (Cavia porcellus). 
Revista de Investigaciones Veterinarias del Perú. 32(5), 1–12. https://doi.
org/10.15381/rivep.v32i5.19654
 
Ebino, K. Y. (1993). Studies on coprophagy in experimental animals. Jikken 
Dobutsu.  Experimental Animals, 42(1), 1–9. https://doi.org/10.1538/
expanim1978.42.1_1 
Franz, R., Kreuzer, M., Hummel, J., Hatt, J.-M., & Clauss, M. (2011). Intake, 
selection, digesta retention, digestion gut ll of two coprophageous species, 
rabbits (Oryctolagus cuniculus) and guinea pigs (Cavia porcellus), on a 
hay-only diet. Journal of Animal Physiology and Animal Nutrition, 95: 
564 – 570. https://doi.org/10.1111/j.1439-0396.2010.01084.x  
Grant, K. M. S. (2014). Rodent Nutrition: Digestive Comparisons of 4 Common 
Rodent Species. Veterinary Clinics of North America: Exotic Animal 
Practice, 17(3), 471-483. https://doi.org/10.1016/j.cvex.2014.05.007
Henry, Y. (1985). Dietary factors involved in feed intake regulation in growing 
pigs: A review, Livestock Production Science. 12(4), 339-354. https://doi.
org/10.1016/0301-6226(85)90133-2
Ibáñez, M. A., de Blas, C., Cámara, L., and Mateos, G. G. (2020). Chemical 
composition, protein quality and nutritive value of commercial soybean 
meals  produced from  beans  from  dierent  countries: A  meta-analytical 
study.  Animal Feed Science and Technology, 267, 114531. https://doi.
org/10.1016/j.anifeedsci.2020.114531  
Imam, J., Hambolu, J. O., Onyeanusi, B. I., Ayo, J. O. and Sulaiman, M. H. (2021). 
Morphological and Morphometric Studies of the Gastro-intestinal Tract of 
the Guinea Pig (Cavia porcellus – Linnaeus, 1758). Journal of Veterinary 
Anatomy, 14(1), 1–12. https://doi.org/10.21608/jva.2021.163576 
Janocha,  A.,  Milczarek,  A.,  Pietrusiak,  D.,  Łaski,  K.,  and  Saleh,  M.  (2022). 
Eciency  of  Soybean  Products  in  Broiler  Chicken  Nutrition.  Animals, 
12(3), 1–16. https://doi.org/10.3390/ani12030294 
Karasov, W. H., & Douglas, A. E. (2013). Comparative digestive physiology. 
Comprehensive Physiology, 3(2), 741 – 783. https://doi.org/10.1002/cphy.
c110054  
Keeble E. (2023). Guinea pig nutrition: what do we know?. In Practice. 45(4), 
185-248.  https://doi.org/10.1002/inpr.309 
Lagos, L. V., & Stein, H. H. (2017). Chemical composition and amino acid 
digestibility of soybean meal produced in the United States, China, 
Argentina, Brazil, or India. Journal of Animal Science, 95(4), 1626. https://
dx.doi.org/10.2527/jas.2017.1440 
Patiño, B. R. E., Cardona-Iglesias, J. L., Carlosama-Ojeda, L. D., Portillo-Lopez, 
P. A., Moreno, D. C. (2019). Parámetros zootécnicos de Cavia porcellus 
en sistemas productivos de Nariño y Putumayo (Colombia). CES 
Medicina Veterinaria Y Zootecnia, 14(3): 29-41. https://doi.org/10.21615/
cesmvz.14.3.3 
Patiño, B. R. E., Moreno, V. D. C., Carlosama, O. L. D., Portillo, L. P. A., & 
Cardona-Iglesias, J. L. (2021). Nutritional management of Cavia porcellus 
L. in the Andes of Colombia. Revista de Investigaciones Altoandinas, 
23(2), 85–92. https://doi.org/10.18271/ria.2021.190  
Riaz, M. Q., Südekum, K. H., Clauss, M., Jayanegara, A. (2014). Voluntary feed 
intake and digestibility of four domestic ruminant species as inuenced 
by dietary constituents: a meta-analysis, Livestock Science, 162, 76-85. 
http://dx.doi.org/10.1016/j.livsci.2014.01.009 
Sciellour, M. L, Labussi, E., Zemb, O., & Id, D. R. (2018). Eect of dietary ber 
content on nutrient digestibility and fecal microbiota composition in 
growing-nishing pigs. PLoS ONE 13(10), 1–20. https://doi.org/10.1371/
journal.pone.0206159 
Shen, J. S., Song, L. J., Sun, H. Z., Wang, B., Chai, Z., Chacher, B., and Liu, J. X. 
(2015). Eects of corn and soybean meal types on rumen fermentation, 
nitrogen metabolism and productivity in dairy cows. Asian-Australasian 
Journal of Animal Sciences, 28(3), 351–359. https://doi.org/10.5713/
ajas.14.0504 
Shen, M. M., Bhuiyan, M. M., & Iji, P. A. (2016). Enhancing the nutritional value 
of soybeans for poultry through supplementation with new-generation 
feed enzymes. World’s Poultry Science Journal, 72(2), 307–322. https://
doi.org/10.1017/S0043933916000271 
Slade, L. M., & Hintz, H. F. (1969). Comparison of digestion in horses, ponies, 
rabbits, and guinea pigs. Journal of Animal Science, 28, 842-843. https://
doi.org/10.2527/jas1969.286842x 
Stefanello, C., Vieira, S. L., Rios, H. V., Simões, C. T., and Sorbara, J. O. B. (2016). 
Energy and nutrient utilization of broilers fed soybean meal from two 
dierent Brazilian production areas with an exogenous protease. Animal 
Feed Science and Technology, 221, 267–273. https://doi.org/10.1016/j.
anifeedsci.2016.06.005  
Valentine, M. F., De Tar, J.R., Mookkan, M., Firman, J. D., & Zhang, Z. J. (2017). 
Silencing of Soybean Ranose Synthase Gene Reduced Ranose Family