
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Lemus et al. Rev. Fac. Agron. (LUZ). 2024 41(3): e244122
5-6 |
Figure 5. Mantel test results. A distribution pattern can 
be observed according to genetic distances and 
geographical distances between populations. 
The  pattern  showed  greater  diversity  and  dierentiation  as  the 
spatial distribution of the three HP breed populations analyzed were 
further from the southeast of the country (Yucatán) and its southwest 
and northwest coasts (Oaxaca and Nayarit) (gure 1), drawing a gene 
ow  presumably  carried  out  by  anthropogenic  factors,  the  latter, 
possibly due to the original and rst introduction points of European 
pig breeds in the colonization events of America during the 15
th
 and 
16
th
 centuries carried out by the Spanish Empire (Hancock, 2022) 
and clearly distinguishing three distinct groups, as it is analyzed  
in Cesconeto et al. (2017) and Pimentel et al. (2023), where it is 
established a positive correlation between geographical and genetic 
distances in animals involved in anthropogenic activities (pigs 
and  horses  respectively)  clearly  dierentiating  them  into  dierent 
regional groups. 
 The clear genetic diversity of HP populations throughout their 
geographical distribution and how in dierent locations their genetic 
structure  continues  to  be  dierent,  indicates  that  even  belonging 
to the same race, the populations present great diversity between 
them indicating that despite their state of conservation they present 
levels of introgression by commercial breeds demonstrating a poor 
conservation state and the need to stablish a genetic conservation 
program. 
Conclusions
The results obtained indicate that the three HP breed populations 
analyzed in the present research are dierent from each other and the 
genetic diversity analysis results suggest that they are closely related 
to the Iberian breed, genetically distant from the commercial breeds 
and, at the same time, share ancestry in dierent degrees with them. 
The above seems to indicate that the genetics of the HP breed are 
dierent according to its distribution throughout the country and their 
heterogeneous production systems.
The latter unveils their poor conservation state and the need to 
stablish a genetic conservation program, meaning an eort to prevent 
the loss of a signicant cultural, natural and genetic resource.
Have a more detailed description of the current state of these 
populations, manage to present a clearer perspective of the future 
necessary actions that must be taken for their adequate conservation as 
local breeds and, as far as possible, establish a genetic reserve program.
Acknowledgments
This study was supported and funded by the Secretary for 
Research, Innovation, and Higher Education, Mérida, Yucatán, 
Mexico. William Orlando Burgos Paz thank to Corporación 
Colombiana de Investigación Agropecuaria – AGROSAVIA for the 
support in data analysis (project ID 1002471).
Literature cited
Alexander, D. H., Novembre, J., & Lange, K. (2009). Fast model-based estimation 
of ancestry in unrelated individuals. Genome Research,  19 (9), 1655-
1664. http://www.genome.org/cgi/doi/10.1101/gr.094052.109.
Bordonaro, S., Chessari, G., Mastrangelo, S., Senczuk, G., Chessa, S., Castiglioni, 
B., Tumino, S., Marletta, D., & Criscione, A. (2023). Genome-wide 
population structure, homozygosity, and heterozygosity patterns of 
Nero Siciliano pig in the framework of Italian and cosmopolitan breeds.  
Animal Genetics, 54, 591–605. https://doi.org/10.1111/age.13344.
Burgos-Paz, W., Souza, C. A., Megens, H. J., Ramayo-Caldas, Y., Melo, M., 
Lemus-Flores, C., Caal, E., Soto, H.W., Martínez, R., Álvarez, L. A., 
Aguirre, L., Iñaguez, V., Revidatti, M. A., Martínez-Lopéz, O.R., Llambi, 
S., Esteve-Codina, A., Rodríguez, M.C., Crooijmans, R. P. M. A., Paiva, 
S. R., Schook L.B.. Groenen M.A. & Pérez-Enciso, M. (2013). Porcine 
colonization of the Americas: a 60k SNP story. Heredity, 110, 321–330. 
https://doi.org/10.1038/hdy.2012.109.
Cesconeto, R. J., Joost, S., McManus, C. M., Paiva, S. R., Cobuci, J. A., & Braccini, 
J. (2017). Landscape genomic approach to detect selection signatures in 
locally adapted Brazilian swine genetic groups. Ecology and Evolution, 
7(22), 9544-9556. https://doi.org/10.1002/ece3.3323.
Chang, C. C., Chow, C. C., Tellier, L. C., Vattikuti, S., Purcell, S. M., & Lee, J. J. 
(2015). Second-generation PLINK: Rising to the challenge of larger and 
richer datasets. GigaScience, 4(1), 7. https://doi.org/10.1186/s13742-015-
0047-8.
DAD-IS. (2020). Sistema de Información sobre la Diversidad de los Animales 
Domésticos  (DAD-IS@fao.org).  FAO. http://www.fao.org/dad-is/
browse-by-country-and-species/es/.
DeWoody, J. A., Harder, A. M., Mathur, S., & Willoughby, J. R. (2021). The long‐
standing  signicance  of  genetic  diversity  in  conservation.  Molecular 
Ecology, 30(17), 4147-4154. https://doi.org/10.1111/mec.16051.
Govindarajan, R., Duraiyan, J., Kaliyappan, K., & Palanisamy, M. (2012). 
Microarray and its applications. Journal of Pharmacy and Bioallied 
Sciences, 4(6), 310-312. https://doi.org/10.4103/0975-7406.100283.
Hancock, J.F. (2022). Spanish Conquest and Colonization of the Americas. In: 
World Agriculture Before and After 1492. Springer, Cham. https://doi.
org/10.1007/978-3-031-15523-9_5.
Hernández, A., García Munguía, C. A., García Munguía, A. M., Ortíz Ortíz, 
J. R., Sierra Vásquez, Á. C., & Morales Flores, S. (2020). Sistema de 
producción del Cerdo Pelón Mexicano en la Península de Yucatán. Nova 
Scientia, 12(24). https://doi.org/10.21640/ns.v12i24.2234.
 
Kawęcka,  A.,  Gurgul,  A.,  &  Miksza-Cybulska,  A.  (2016).  The  Use  of  SNP 
Microarrays for Biodiversity Studies of Sheep – A Review. Annals of 
Animal Science, 16(4), 975-987. https://doi.org/10.1515/aoas-2016-0017.
Lemus-Flores, C., Alonso-Morales, R., Toledo-Alvarado, H., Sansor-Nah, 
R., Burgos-Paz, W., & Dzib-Cauich, D. (2020). Diversidad genética 
y  estructura  poblacional  del  cerdo  negro  lampiño  de  Yucatán  usando 
chip SNP50. Abanico veterinario,  10, 1-12. https://doi.org/10.21929/
abavet2020.10.
 
Lemus-Flores, C., Bugarín Prado, J. O., Valdivia Bernal, R., Segura Correa, J. 
C., & Sansor-Nah, R. (2023). Genetic relationships of the Yucatan black 
hairless  pig  with  Iberian  breeds  using  single  nucleotide  polymorsms. 
Brazilian Journal of Veterinary Research and Animal Science,  60, 
e195697. https://doi.org/10.11606/issn.1678-4456.bjvras.2023.195697.
Lemus-Flores, C., Ulloa-Arvizu, R., Ramos-Kuri, M., Estrada, F. J., & 
Alonso, R. A. (2001). Genetic analysis of Mexican hairless pig 
populations. Journal of Animal Science, 79(12), 3021-3026. https://doi.
org/10.2527/2001.79123021.
Li, S.-J., Yang S.-H., Zhao S.-H., Fan B., Yu M., Wang H.-S., Li M.-H., Liu B., 
Xiong T.-A. and Li K. (2004). Genetic diversity analyses of 10 indigenous 
Chinese pig populations based on 20 microsatellites. Journal of Animal 
Science, 82(2), 368–374. https://doi.org/10.2527/2004.822368.
Meuwissen, T. H. E., Sonesson, A. K., Gebregiwergis, G., & Woolliams, J. A. 
(2020). Management of Genetic Diversity in the Era of Genomics. 
Frontiers in Genetics, 11, 880. https://doi.org/10.3389/fgene.2020.00880.
Monteiro, A. N. T. R., Wilfart, A., Utzeri, V. J., Batorek Lukač, N., Tomažin, U., 
Costa, L. N., Čandek-Potokar, M., Fontanesi, L., & Garcia-Launay, F. 
(2019). Environmental impacts of pig production systems using European 
local breeds: The contribution of carbon sequestration and emissions 
from grazing. Journal of Cleaner Production,  237, 117843. https://doi.
org/10.1016/j.jclepro.2019.117843.
Muñoz, M., Bozzi, R., García-Casco, J., Núñez, Y., Ribani, A., Franci, O., García, 
F., Škrlep, M., Schiavo, G., Bovo, S., Utzeri, V. J., Charneca, R., Martins, 
J. M., Quintanilla, R., Tibau, J., Margeta, V., Djurkin-Kušec, I., Mercat, 
M. J., Riquet, Estellé, J., Zimmer, C., Razmaite, V., Araujo, J. P., Radović, 
Č.,  Savić,  R.,  Karolyi, D.,  Gallo,  M.,  Čandek-Potokar, M., Fernández, 
A. I., Fontanesi, L. & Óvilo C. (2019). Genomic diversity, linkage 
disequilibrium and selection signatures in European local pig breeds