This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
    Rev. Fac. Agron. (LUZ). 2024, 41(2): e244116 April-June. ISSN 2477-9407.
6-6 |
The use of both bacterial and fungal biological controls can induce 
increased height in tomato plants infected with R. solanacearum and 
Meloidogyne incognita, respectively (Chávez-Arteaga et al., 2022; 
Zhou et al., 2021). Biological controls would not only positively aect 
plant height and pseudostem diameter, but also chlorophyll content, 
leaf area, leaf thickness, shoot biomass, and roots of banana seedlings 
infected with F. oxysporum f. sp. cubense variety 4 tropical (Li et 
al., 2021). Even though,  the mechanism by which Trichoderma spp., 
ADMF®, or in a certain way Bacillus spp. induced increased plant 
height and pseudostem diameter in banana plants was not studied, it 
could be inferred that these inputs could be acting as biostimulants or 
plant growth promoters (Chavez-Arteaga et al., 2022; Quispe-Quispe 
et al., 2022).
Leaf emission rate 
Although the leaf emission rate assessed up to 113 dat was similar 
in plants treated with Trichoderma spp., Bacillus spp., and ADMF® 
compared to those not treated, only the Trichoderma spp. treatment 
diered positively from the control (13.3 and 11.8 leaves on average, 
respectively). The increase generated by Trichoderma spp. in banana 
plants could subsequently also have an impact on fruit production. 
However, this and other aspects may be addressed in future research. 
In this context, Vargas-Calvo et al. (2015) noted that the number 
of  total  leaves  emitted  (liform and  true)  in  tall  and short  banana 
cultivars was 39 leaves on average throughout their life cycle.
Conclusions 
Trichoderma spp. (T1), Bacillus spp. (T2) and ADMF® (T3) 
have a benecial eect on the management of Moko caused by R. 
solanacearum in bananas. These inputs evidenced their biocontrol 
capacity, which allows to reduce the incidence and progress of the 
disease  in  banana  plants  under  eld  conditions.  Likewise,  their 
application promotes a greater vegetative development of banana 
plants. Considering these results, Trichoderma,  Bacillus, and the 
ADMF® product are promising sustainable alternatives to be 
implemented in the integrated management of Moko in organic 
banana  crops.  However,  further  studies  are  needed  to  conrm  its 
eectiveness on a larger scale.
Acknowledgment
The research work was possible thanks to the support of the Tierra 
Verde Agricultural Production Association “ASOPRATVERDE”, the 
National Institute of Agricultural Research “INIAP” (Santo Domingo 
Experimental Station, Pichilingue Tropical Experimental Station), the 
DAPME Project, AGROCALIDAD and the Sustainable Agriculture 
and Bioenergy Research Group of the Faculty of Agronomic 
Engineering of the UTM. 
Literature cited
Agamez Ramos, E. Y., Zapata Navarro, R. I., Oviedo Zumaqué, L. E., & Barrera 
Violeth, J. L. (2008). Evaluation of substrates and fermentation solid 
process for spores production of Trichoderma sp. Revista Colombiana 
de Biotecnología,  10(2), 23-34. https://www.redalyc.org/articulo.
oa?id=77610204 
Avozani, A., Tumelero, A. I., Baldiga Tonin , R., Denardin, N., Gomes Silva, A., & 
Garcés-Fiallos, F. R. (2022). Biological control of Corynespora cassicola 
and Drechslera tritici-repentis. Revista de Agricultura Neotropical, 9(4), 
e7111. https://doi.org/10.32404/rean.v9i4.7111
Bautista-Montealegre, L. G., Bolaños-Benavides, M. M., Abaunza-González, 
C. A., Arguelles-Cárdenas, J. H., & Forero-Camacho, C. A. (2016). 
Moko de plátano y su relación con propiedades físicas y químicas en 
suelos del departamento de Quindío Colombia. Revista Colombiana 
de  Ciencias  Hortícolas,  10(2), 273-283. https://doi.org/10.17584/
rcch.2016v10i2.5066
Brunda,  N.  B.,  Chirag,  D.,  Jilen,  M.,  &  Menaka,  M.  (2023).  Eect  of  blending 
proportion on sensory appeal of the blended squash using banana pseudostem 
sap with mango, papaya and Aloe vera. IJCS, 11(1), 06-11. https://www.
chemijournal.com/archives/2023/vol11issue1/PartA/10-6-32-941.pdf
Castaño-Zapata, J. (1989). Estandarización de la estimación de daños causados 
por hongos, bacterias y nematodos en fríjol (Phaseolus vulgaris 
L.). Fitopatología Colombiana, 13(1), 9-19.
Castillo,  T.  (2023).  Eect  of  shade  on  the  severity  of  Moko  (Ralstonia 
solanacearum) on Guineo (Musa balbisiana ABB). European Journal 
of  Agriculture  and  Food  Sciences,  5(1), 1-5. https://doi.org/10.24018/
ejfood.2023.5.1.611
Ceballos, G., Álvarez, E., & Bolaños, M. M. (2014). Reduction in populations 
of  Ralstonia solanacearum race 2 in plantain  (Musa  AAB Simmonds) 
with extracts from Trichoderma spp. and antagonistic bacteria. Acta 
Agronomica, 63(1), 83-90. https://doi.org/10.15446/acag.v63n1.43121
Chávez-Arteaga, K.T., Cedeño-Moreira, Á.V., Canchignia-Martínez, H.F., & 
Garcés Fiallos, F.R. (2022). Candidate rhizobacteria as plant growth-
promoters and root-knot nematode controllers in tomato plants. 
Scientia Agropecuaria,  13(4), 423-432. https://doi.org/10.17268/sci.
agropecu.2022.038
Creencia Armi, R., Alcantara, E. P., Opulencia, R. B., Diaz, M. G. Q., & Monsalud, 
R. G. (2022). A  preliminary screening of philippine mangrove soil bacteria 
exhibit suppression of Ralstonia solanacearum (Smith) Yabuuchi et al. 
causing moko disease of banana (Musa acuminata Cavendish subgroup) 
under laboratory conditions. Journal of the International Society for 
Southeast Asian Agricultural Sciences, 28(1), 135-148. http://issaasphil.
org/wp-content/uploads/2022/06/11.-Creencia-et-al-2022-Mangrove-
soil-bacteria-FINAL.pdf 
Crespo-Clas, Á.M., Canchignia-Martínez, H.F., & Garcés-Fiallos, F.R. (2023). 
Nematodes and root system are aected by rhizobacterial consortium in 
the third generation of commercial banana plants. Revista de Agricultura 
Neotropical, 10(3), e7725. https://doi.org/10.32404/rean.v10i3.7725
Debnath, S., Khan, A. A., Das, A., Murmu, I., Khan, A., & Mandal, K. K. (2019). 
Genetic Diversity in Banana. 217-241. https://doi.org/10.1007/978-3-
319-96454-6_8
Fernandes Domingues Duarte, C., Cecato, U., Trento Biserra, T., Mamédio, D., & 
Galbeiro, S. (2020). Azospirillum spp. en gramíneas y forrajeras. Revisión. 
Rev. Mex. Cienc. Pecu.,  11(1), 223-240. https://doi.org/10.22319/rmcp.
v11i1.4951
He, L. Y., Sequeira, L., & Kelman, A. (1983). Characteristics of strains of 
Pseudomonas solanacearum from China. Plant Disease,  67, 1357-
1361. https://www.apsnet.org/publications/plantdisease/backissues/
Documents/1983Articles/PlantDisease67n12_1357.PDF 
Leite Pais, A. K., Silva dos Santos, L. V., Rodrigues Albuquerque, G. M., Gomes 
de  Farias,  A.  R.,  Silva  Junior,  W.  J.,  de  Queiroz  Balbino,  V.,  Freire 
Silva, A. M., Siqueira da Gama, M. A., & Barbosa de Souza, E. (2022). 
Comparative genomics and phylogenomics of the Ralstonia solanacearum 
Moko ecotype and its symptomatological variants. Genetics and 
Molecular Biology, 45, 4, e20220038. https://doi.org/10.1590/1678-4685-
GMB-2022-0038
Li,  X.,  Li,  K., Zhou,  D.,  Zhang,  M.,  Qi, D.,  Jing, T.,  Zang,  X., Qi,  C., Wang, 
W., Xie, J. (2021). Biological control of banana wilt disease caused by 
Fusarium oxyspoum f. sp. cubense using Streptomyces sp. H4. Biological 
Control, 155, 104524. https://doi.org/10.1016/j.biocontrol.2020.104524
Quispe-Quispe, E., Moreira-Morrillo, A.A., & Garcés-Fiallos, F.R. (2022). Una 
revisión sobre biocontroladores de Phytophthora capsici y su impacto en 
plantas de Capsicum: Una perspectiva desde el exterior al interior de la 
planta. Scientia Agropecuaria, 13(3), 275-289. https://doi.org/10.17268/
sci.agropecu.2022.025 
Ramírez,  M.,  Neuman,  B.  W.,  &  Ramírez,  C.  A.  (2020).  Bacteriophages  as 
promising agents for the biological control of Moko disease (Ralstonia 
solanacearum) of banana. Biological Control, 149, 104238. https://doi.
org/10.1016/j.biocontrol.2020.104238
Sabando-Ávila, F., Molina-Atiencia, L.M., & Garcés-Fiallos, F.R. (2017). 
Trichoderma harzianum en pre-trasplante aumenta el potencial 
agronómico del cultivo de piña. Revista Brasileira De Ciências Agrárias, 
12(4), 410-414. https://doi.org/10.5039/agraria.v12i4a5468 
Santos, H. G., Jacomine, P. K. T., Anjos, L. H. C., Oliveira, V. A., Oliveira, J. 
B., Coelho, M. R., Lumbreras, J. F., & Cunha, T. J. F. (2013). Sistema 
brasileiro  de  classicação  de  solos. 3. ed. Rev. Ampl. Rio de Janeiro: 
Embrapa Solos. 
Shaner, G., and Finney R. E. (1977). The eect of nitrogen fertilization on the 
expression of slow-mildewing resistance in Knox wheat. Phytopathology, 
67, 1051-1056. https://doi.org/10.1094/Phyto-67-1051
Soil SurveySta. (2014). Keys to soil taxonomy. Washington: Natural Resources 
Conservation Service and Agriculture Department.
Valencia, L., Álvarez, E., & Castaño, J. (2014). Resistencia de treinta y cuatro 
genotipos de platano (Musa AAB) y banano (Musa AAA) a cinco cepas 
de Ralstonia solanacearum Raza 2 (Smith). Agronomía, 22(2), 21-34. 
http://agronomia.ucaldas.edu.co/downloads/Agronomia 22(2)_3.pdf
Vargas-Calvo, A., Acuña-Chinchilla, P., & Valle-Ruiz, H. (2015). La 
emisión  foliar  en  plátano  y  su  relación  con  la  diferenciación  oral. 
Agronomía Mesoamericana,  26(1), 120-128. https://doi.org/10.15517/
am.v26i1.16935
Villegas-Escobar, V., González-Jaramillo, L.M., Ramírez, M., Moncada, R.N., 
Sierra-Zapata, L., Orduz, S., & Romero-Tabarez, M. (2018). Lipopeptides 
from Bacillus sp. EA-CB0959: Active metabolites responsible for in vitro 
and in vivo control of Ralstonia solanacearum. Biological Control, 125, 
20-28. https://doi.org/10.1016/j.biocontrol.2018.06.005
Zhou, Y.,  Yang,  L.,  Wang,  J.,  Guo,  L.,  &  Huang, J.  (2021).  Synergistic  eect 
between Trichoderma virens and Bacillus velezensis on the control of 
tomato bacterial wilt disease. Horticulturae, 7(11), 439.  https://doi.
org/10.3390/horticulturae7110439