© The Authors, 2024, Published by the Universidad del Zulia
*Corresponding author: fjrincon@espam.edu.ec
Keywords:
Soursop pulp
Polyphenols
Antioxidant activity
Acetogenins
Bioactive compounds and antioxidant activity of Annona muricata L. fruits located in Manabí,
Ecuador
Compuestos bioactivos y actividad antioxidante de frutos de Annona muricata L. localizados en
Manabí, Ecuador
Compostos bioactivos e actividade antioxidante de frutos de Annona muricata L. localizada em
Manabí, Equador
Cecilia Párraga
1
Fernando Rincón-Acosta
2*
Roy Barre-Zambrano
3
Jhon Vera-Cedeño
2
Plinio Vargas
1
Freddy Mendoza Rivadeneira
4
Rev. Fac. Agron. (LUZ). 2024, 41(1): e244107
ISSN 2477-9407
DOI: https://doi.org/10.47280/RevFacAgron.v41.n1.07
Food technology
Associate editor: Dra. Gretty R. Ettiene Rojas
University of Zulia, Faculty of Agronomy
Bolivarian Republic of Venezuela.
1
Departamento de Procesos Agroindustriales, Facultad de
Agrociencias, Universidad Técnica de Manabí, Ecuador.
2
Escuela Superior Politécnica Agropecuaria de Manabí.
Manuel Félix López, ESPAM-MFL, Campus Politécnico El
Limón, vía Calceta- El Morro, Ecuador.
3
Carrera de Alimentos, Área productiva, Universidad Laica
Eloy Alfaro de Manabí Extensión Chone, Ecuador.
4
Departamento Producción Animal, Facultad de
Agrociencias, Universidad Técnica de Manabí, Ecuador.
Received: 13-10-2023
Accepted: 17-01-2024
Published: 27-02-2024
Abstract
The mesoendocarp of Annona muricata L. (Annonaceae) has essential
minerals, ascorbic acid, dietary ber, polyphenols, and acetogenins in its
composition, which evidences the nutraceutical benets of this fruit tree.
This study aimed to determine the bioactive compounds and antioxidant
activity of A. muricata fruits located in Manabí, Ecuador. The content of
vitamin C, dietary ber, minerals, polyphenols, avonoids, antioxidant
activity, and the presence of acetogenins were determined. It was observed
that the minerals potassium, calcium, sodium, zinc, magnesium, and iron
are the major components present in soursop pulp ash. Likewise, relevant
content of vitamin C (26.64 mg AA.100 g
-1
pulp), total polyphenols (398.79
mg EAG.100 g
-1
pulp),
avonoids (192.20 mg EQ.100 g
-1
pulp), and high
antioxidant activity (318.90 mmol equivalents of trolox.100
g
-1
pulp) were
evidenced in the fruits of A. muricata. The ethanolic extracts obtained from
the fruit when applying the Kedde test, presented a pink ring, which is an
unequivocal indicator of the presence of acetogenins, which have a proven
antineoplasic eect. The mesoendocarp of A. muricata located in Manabí,
Ecuador has an important content of bioactive compounds: essential minerals
(K, Ca, Zn, Mg), vitamin C, polyphenols, presence of acetogenins and high
antioxidant activity, properties that reduce the risk of degenerative diseases
and cellular aging. Therefore, its consumption is recommended in the daily
diet as fresh and processed fruit because it constitutes a valuable nutritional
and therapeutic alternative.
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rev. Fac. Agron. (LUZ). 2024, 41(1): e244107 January-March. ISSN 2477-9407.2-6 |
Resumen
El mesoendocarpio de Annona muricata L. (Annonaceae)
presenta en su composición minerales esenciales, ácido ascórbico,
bra dietaría, polifenoles y acetogeninas, lo cual evidencia los
benecios nutracéuticos de este frutal. El objeto de este estudio fue
determinar los compuestos bioactivos y la actividad antioxidante de
frutos de A. muricata localizados en Manabí, Ecuador. Se determinó
el contenido de vitamina C, bra dietaría, minerales, polifenoles,
avonoides, actividad antioxidante y se identicó la presencia de
acetogeninas. Se observó que los minerales potasio, calcio, sodio,
zinc, magnesio y hierro son los componentes mayoritarios presentes
en la ceniza de la pulpa de guanábana. Así mismo, se evidenció un
contenido relevante de vitamina C (26,64 mg AA.100 g
-1
pulpa),
polifenoles totales (398,79 mg EAG.100 g
-1
pulpa), avonoides
(192,20 mg EQ.100 g
-1
pulpa) y alta actividad antioxidante (318,90
mmoles equivalentes de trolox.100 g
-1
pulpa) en los frutos de A.
muricata. Los extractos etanólicos obtenidos del fruto al aplicar la
prueba de Kedde, presentaron un anillo de color rosado, lo cual es
un indicador inequívoco de la presencia de acetogeninas, las cuales
tienen efecto antineoplásico demostrado. El mesoendocarpio de
A. muricata localizados en Manabí, Ecuador tiene un importante
contenido de compuestos bioactivos: minerales esenciales (K, Ca,
Zn, Mg), vitamina C, polifenoles, presencia de acetogeninas y una
alta actividad antioxidante, propiedades que disminuyen el riesgo
de padecer enfermedades degenerativas y el envejecimiento celular.
Por lo tanto, se recomienda su consumo en la dieta diaria como fruta
fresca y procesada, debido a que constituye una valiosa alternativa
nutricional y terapéutica.
Palabras clave: pulpa de guanábana, polyphenols, actividad
antioxidante, acetogeninas.
Resumo
O mesoendocarpo da Annona muricata L. (Annonaceae) tem na
sua composição minerais essenciais, ácido ascórbico, bra alimentar,
polifenóis e acetogeninas, o que comprova os benefícios nutracêuticos
desta árvore de fruto. O objetivo do estudo foi determinar os
compostos bioactivos e a atividade antioxidante dos frutos de A.
muricata localizados em Manabí, Equador. Foi determinado o teor
de vitamina C, bra alimentar, minerais, polifenóis, avonóides,
atividade antioxidante e a presença de acetogeninas. Observou-se que
os minerais potássio, cálcio, sódio, zinco, magnésio e ferro são os
principais componentes presentes nas cinzas da polpa da graviola. Da
mesma forma, foi evidenciado um relevantes teor de vitamina C (26,64
mg AA.100 g
-1
de polpa), polifenóis totais (398,79 mg EAG.100 g
-1
de
polpa), avonóides (192,20 mg EQ.100 g
-1
de polpa) e uma elevada
atividade antioxidante (318,90 mmol equivalentes de trolox.100 g
-1
de polpa) nos frutos de A. muricata. Os extractos etanólicos obtidos
do fruto após o teste de Kedde apresentam um anel cor-de-rosa,
que é um indicador inequívoco da presença de acetogeninas, que
têm um efeito antineoplásico comprobado. O mesoendocarpo de
A. muricata localizado em Manabí, Equador, possui um importante
conteúdo de compostos bioactivos: minerais essenciais (K, Ca, Zn,
Mg), vitamina C, polifenóis, presença de acetogeninas e uma elevada
atividade antioxidante, propriedades que reduzem o risco de doenças
degenerativas e o envelhecimento celular. Por isso, recomenda-se o
seu consumo na dieta diária como fruta fresca e processada, pois é
uma alternativa nutricional e terapêutica valiosa.
Palavras-chave: polpa de graviola, polifenóis, atividade antioxidante,
acetogeninas.
Introduction
Annona muricata L. (Annonaceae) is a eshy, juicy fruit that
is consumed as a “fresh fruit” and also processed in nectars, ice
cream, yogurt, and other types of foods. It has been reported that the
mesoendocarp of soursop presents an appreciable content of bioactive
compounds: essential minerals, ascorbic acid, dietary ber (Badrie
and Schauss, 2010; Coria-Téllez et al., 2018), and high polyphenol
content (Jiménez et al., 2014; Jiménez-Zurita et al., 2017; Vit et al.,
2014), which have therapeutic properties: antimicrobial, antiparasitic,
anxiolytic, antiulcer, hepatoprotective and as a hypoglycemic agent
(Chan et al., 2016; Coria-Téllez et al., 2018; Jiménez-Zurita et al.,
2017).
Flavonoids extracted from dierent vegetative and reproductive
organs of the soursop fruit have been evaluated in cell models
exposed to dierent oxidative stimuli to inhibit lipid peroxidation
damage (Coria-Téllez et al., 2018).
On the other hand, acetogenins a bioactive compound present
in Annona muricata leaves and fruits, have been discribe to have a
selective anticancer eect on tumor cells, such as, breast carcinoma,
colon, liver, prostatic hyperplasia, and even lymphoma (Hernández-
Fuentes et al., 2019; Liaw et al., 2016; Ogbu et al., 2020; Paul et al.,
2013).
The above shows the multiple functional properties (nutritional
and therapeutic) of the soursop fruit, which raises the alternative of
taking advantage of its great biological value (high content of vitamin
C, essential minerals, phenolic compounds, and acetogenins). In
addition, consumers worldwide have a growing and preferential
demand for tropical fruits, since they have components with
biological activity that inhibit the oxidation of free radicals, a process
that has been associated with the suering of degenerative diseases
and cellular aging (Chan et al., 2016). Therefore, the objective of this
research is to determine the bioactive compounds and antioxidant
activity of A. muricata fruits located in Manabí, Ecuador, which
constitutes a contribution to promote the production of this promising
fruit tree on a large scale in Manabí, Ecuador, and to stimulate its
consumption as a fresh and/or processed fruit worldwide.
Materials and methods
Fruit selection
A total of 20 healthy plants of Annona muricata L., located at
0°41’53.5’ south latitude 80°5.617’ W’ west longitude at 14 m
a.s.l. in the Chone Canton, Manabí, Ecuador, were selected. Three
(3) soursops per plant were randomly harvested under conditions of
physiological maturity, packed in 10 kg bags, and transferred to the
Bromatology Laboratory, Department of Agroindustrial Processes,
Faculty of Agrosciences, Universidad Técnica de Manabí, Ecuador.
Subsequently, the harvested fruits were washed with water at 25
°C (removal of soil and leaf remains) and immersed in ETHREL®
(2 mL.L
-1
) for 10 min to uniformize maturity, using the method
described by Fuenmayor et al. (2016). Subsequently, the epicarp was
separated from the mesoendocarp of the ripe fruits and stored in a
refrigerator (Top Mount Croma | ri-480, Indurama, Ecuador) at 8°C/6
h, to maintain consistency and preserve its conservation.
Obtaining soursop pulp concentrate
The pulp obtained (mesoendocarp) previously refrigerated
was placed in properly sterilized plastic containers (approximately
3 kg per container), crushed, and liqueed in an industrial blender
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Párraga et al. Rev. Fac. Agron. (LUZ). 2024 40(1): e2441073-6 |
(Osterizer® MAX Reversible model Oster® BLST4655, 1,500 W
motor, Ecuador) at 30,000 rpm/5 min, at room temperature (25°C),
and scalded (80°C/1 min) in double-coated aluminum containers
(Imusa Brand, Ecuador), to inactivate some enzymes. Then, it was
cooled in an ice-water bath until it reached approximately 8 °C.
Subsequently, the previously scalded mesoendocarp was placed in
hermetically sealed plastic bags and stored in a freezer (Indurama
Brand; Ecuador), at -5 °C, until it was analyzed in a 24 h period.
General chemical composition
The following variables were determined: pH: a benchtop pH
meter (MP-500 Series, SANXYN, Ecuador) was used, and certied
buer solutions were used for calibration. The total soluble solids
(°Brix) were determined using the AOAC 22.024 method (1990), in
a high-accuracy portable digital refractometer (HI96814, HANNA,
Ecuador, ± 0.2 °Brix), with a response time of 1.5 seconds, equipped
with a sealed int glass prism and stainless steel well. Determining
moisture and ash content was carried out as established by AOAC
22.008 (1990) for fruits. Proteins were quantied using the micro-
Kjeldahl method AOAC 22.008 (1990). For the determination of
crude ber, the method described in AOAC 962.09 was applied
(1995).
Mineral content
Metals (Ca, Zn, Mg, Fe, Se, Co, Cr, Cu, Mo) were quantied
by atomic absorption spectroscopy (AAS) with ame, using a
spectrophotometer (Perkin Elmer model 3030-B, USA), while Na
and K were detected by atomic emission spectroscopy (AES) (Perkin
Elmer® model 3030-B, USA). The method described by Fernández
et al. (2007) was used.
Vitamin C
It was determined by applying the method described by Clamens
et al. (2014). The mesoendocarp (30 g) was crushed in a blender
(Osterizer® MAX Reversible model Oster® BLST4655, 1500 W
motor, Ecuador). Vitamin C concentration was expressed in mg
AA.100 g
-1
pulp.
Obtaining ethanolic extracts
A mixture of 1:5 soursop fruit pulp (m/m) and ethanol (Merck,
99% purity) was prepared using a homogenizer (Fisherbrand™ 850,
USA). The homogenates obtained were macerated for 24 h without
agitation and in the presence of light; They were then centrifuged
using a centrifuge (XC-2000 Premiere, USA) at 1008 G for 10 min.
Supernatants were used for the quantication of total polyphenols,
avonoids, antioxidant activity, and acetogenin identication.
Total polyphenols
The method of Singleton et al. (1999) was applied, which is
based on the colorimetric method with the Folin-Ciocalteu reagent. A
calibration curve (0; 0.25; 0.05; 0.1; 0.2; 0.3; 0.4; 0.5;0.7 and 0.8 g.L
-1
)
was performed with gallic acid (Sigma, Steinheim, Germany) from a
stock solution of 0.1 g.L
-1.
The results obtained were expressed as mg
AG.100 g-
1
of soursop pulp.
Total avonoids
The method of Woisky and Salatino, (1998) was used. Flavonoid
concentration was determined by a calibration curve (0; 0.25; 0.05;
0.1; 0.2; 0.3; 0.4; 0.5; 0.7 and 0.8 g·L
-1
) with quercetin (Sigma,
Germany). The results were expressed as mg Q.100 g
-1
of soursop
pulp.
Antioxidant activity
The method described by Re et al. was applied. (1999). A Trolox
calibration curve was constructed at dierent concentrations (0, 0.25,
0.05; 0.1, 0.2; 0.3; 0.4, and 0.5, 1.25, and 2.5 mM) using an 8 mM
Trolox solution (Sigma-Aldrich, Germany) as standard antioxidant.
Antioxidant activity was expressed as μM TEAA.100 g
-1
of soursop
pulp.
Kedde Test
Two mL of the ethanolic extracts of fruit pulp were added in
test tubes, followed by 1 mL of a 2% diluted alcoholic solution of
KOH, and 2 mL of 3.5-dinitrobenzoic acid in 2% ethanol was added
to the samples. The appearance of a pink coloration is indicative of
the presence of acetogenins (lactonic ring) (Laguna-Hernández et al.,
2015).
Statistical analysis
The measurements of the variables studied were performed
in triplicate and the results obtained were tabulated in an Excel
spreadsheet, and descriptive statistics were applied, the results were
expressed as the mean + standard deviation.
Results and discussion
The values obtained in the characterization of the general
chemical composition of the fruit pulp of A. muricata (soursop) are
shown in table 1.
Table 1. Chemical composition of the fruit pulp of A. muricata.
Variables Content
Moisture, % 82.95 + 1.23
Ash, % 0.69 + 0.01
pH 3.91 + 0.01
Fiber, % 0.81 + 0.02
Protein, % 1.64 + 0.04
Soluble solids °Brix 15.44 + 0.99
Results are presented as means + standard deviation (n = 3)
The moisture content (82.95 %) and ash content (0.69 %) obtained
in this study are within the range of values reported (80.93 % to 86.19
%) and (0.22 % to 0.70 %), respectively, for soursop pulp grown or
disseminated in dierent geographical locations (Arrazola-Paternina
et al., 2013; Badrie and Schauss, 2010; León-Méndez et al., 2016;
Ojeda et al., 2007).
Regarding the pH value obtained (3.91), it is in the published
range (3.70 - 4.20) for the pulp of this fruit tree (Arrazola-Paternina et
al., 2013; Badrie and Schauss, 2010; García-Soto et al., 2012; León-
Méndez et al., 2016; Ojeda et al., 2007).
The protein (1.64 %) and ber (0.81 %) contents are similar to
those published in various studies (Ojeda et al., 2007; Badrie and
Schauss, 2010; Arrazola-Paternina et al., 2013; León-Méndez et al.,
2016).
The values obtained for total soluble solids (15.44 %) are higher
than the value published by Arrazola-Paternina et al. (2013): 11.3 %;
García-Soto et al. (2012): 14.38 %; León-Méndez et al. (2016): 14.10
%; but comparable to those reported by Baskaran et al. (2015): 15.42
% and Ramírez et al. (2012): 15.44 %.
Mineral composition of soursop pulp
It was observed that the minerals potassium, calcium, sodium,
zinc, magnesium, and iron are the main components present in the
ash of soursop pulp (table 2). Selenium and cobalt are present as
traces; chromium, copper, and molybdenum were not detected. The
results obtained are comparable to those reported for soursop pulp
(Fernández et al., 2007; Hernandez et al., 2018; León-Méndez et al.,
2016; Ramírez et al., 2012).
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rev. Fac. Agron. (LUZ). 2024, 41(1): e244107 January-March. ISSN 2477-9407.4-6 |
Table 2. Mineral composition of the fruit pulp of A. muricata.
Mineral mg.100 g pulp
Potassium (K) 49.23 + 0.43
Zinc (Zn) 38.11 + 0.24
Sodium (Na) 28.75 + 0.18
Magnesium (Mg) 21.34 + 0.30
Calcium (Ca) 19.14 + 0.31
Iron (Fe) 9.24 + 0.12
Selenium (Se) < 1.06
Cobalt (Co) < 0.98
Chromium (Cr) ND
Copper (Cu) ND
Molybdenum (Mo) ND
Results are presented as means + standard deviation (n = 3). ND: Not Detected
The mineral contents present in fruits probably vary due to
the eect of the climatic conditions where the crops are located,
phenology (biological cycles), maturity stage, edaphic conditions,
frequency of fertilization and irrigation (Hernández et al., 2018;
Jiménez et al., 2017; Nam et al., 2017).
On the other hand, it was evidenced that the analyzed soursop
pulp has essential minerals in its constitution, which play vital roles
in physiological and metabolic processes in living beings (Oboh et
al., 2015). It is worth highlighting the high content of zinc, a trace
element that contributes to the strengthening of the immune system,
and potassium, a key macro-element because it acts by controlling the
osmotic processes of the cardiovascular system (Oboh et al., 2015).
Vitamin C content, total polyphenols, avonoids, and
antioxidant activity of A. muricata fruit pulp
The results obtained for vitamin C content, total polyphenols,
avonoids, and antioxidant activity in the pulp of A. muricata are
presented in table 3.
Table 3. Phytochemical content and antioxidant activity of
ethanolic extracts of A. muricata fruit pulp.
Phytochemicals Content
Vitamin C (mg AA 100 g
-1
pulp) 26.64 + 1.01
Total polyphenols (mg EAG.100 g
-1
) 398.79 + 14.91
Total avonoids (mg EQ.100 g
-1
) 192.20 + 8.50
Antioxidant activity (trolox equivalent mmol.100 g
-1
) 318.90+ 10.58
Results are presented as means + standard deviation (n = 3)
It was evidenced that the vitamin C content (26.64 mg AA.100 g
-1
pulp)
is within the ranges reported by Badrie and Schauss. (2010): 20.90-
26.76 mg AA.100 g
-1
pulp; García-Soto et al. (2012): 11.76-26.67
mg AA.100 g
-1
pulp and León-Méndez
et al. (2016) 21.10- 27.44
mg AA.100 g
-1
pulp; but higher than those described by Ojeda et al.
(2007): 19.40-21.56 mg AA/100 g
-1
pulp; Clamens et al. (2014): 14-
13 mg AA.100 g
-1
pulp and Arrazola-Paternina
et al. (2013): 5-7
mg
AA.100 g
-1
pulp and other products such as:
Persea americana (8 mg
AA.100 g
-1
pulp), Citrullus lanatus (10 mg AA.100 g
-1
pulp), Musa
paradisiaca
(10 mg AA.100 g
-1
pulp),
and
Solanum melongena (2 mg
AA.100 g
-1
pulp) (Latham, 2002); however, it is lower than the ranges
published by Fuenmayor et al. (2016): in fruits harvested from plants
grafted on A. muricata (33.1 - 28 mg AA.100 g
-1
pulp), A. glabra
(24.4 - 24.1 mg AA.100 g
-1
pulp) and A. montana (37.4 - 25.8 mg
AA.100 g
-1
pulp), and at the value reported by Ramírez and Pacheco
(2011): 33.24 mg AA.100 g
-1
pulp.
.
It has been shown that the variation of vitamin C content in the
mesoendocarp of A. muricata is closely linked to the stages of fruit
growth (Clamens et al., 2014), rootstock selection (propagation), and
fertilization frequency (Fuenmayor et al., 2016).
The content of determined total polyphenols (398.79 mg
EAG.100 g
-1
pulp), (table 3), is higher than the reported value (332.40
mg EAG.100 g
-1
pulp)
for soursop pulp located in the municipality
of Mara, Venezuela (Clamens et al., 2014) and the average value
published by García-Soto et al. (2012): 161.25 mg EAG.100 g
-1
pulp for fruits obtained with dierent forms of propagation in the
same locality. Signicant contents of total polyphenols (941.40 mg
EAG.100 g
-1
pulp) have been reported in the mesocarp of A. muricata
(Vit et al., 2014), which shows that this fruit tree is an important
source of these phytochemicals.
It is important to note that polyphenols act as antioxidants by
inhibiting cellular biological oxidation, contributing to reducing the
risks of hypertension, cancer, diabetes, cerebrovascular diseases, and
cellular aging (McDougall, 2016).
The avonoid content (Table 3) obtained in the present study
(192.20 mg EQ.100 g
-1
pulp) is lower than the value reported by Vit
et al. (2014) for soursop pulp (574 mg EQ.100 g
-1
). These dierences
probably depend on the cultivar, soil conditions, fruit maturity,
propagation forms, and agronomic practices (Clamens et al., 2014;
Ramírez et al., 2012; Sandoval et al., 2014).
It has been reported that the avonoids present in soursop
pulp are: the luteolin avone, the most abundant, followed by the
avonol myricetin and the avone apigenin; which are found in
greater proportion than the values observed for Musa paradisiaca,
Mangifera indica, Carica papaya, and Ananas comosus (Sandoval
et al., 2014). Flavonoids (phenolic compounds) of natural origin
have biological activity and benecial eects on the development of
chronic degenerative diseases (Chan et al., 2016).
The soursop pulp studied has an antioxidant activity (318.90
mmol equivalent of trolox.100 g
-1
pulp), (Table 3), higher than the
values reported for the mesocarp of soursop fruits located in the
municipality of Mara, Zulia, Venezuela (Fuenmayor et al., 2016), but
analogous to those reported for fruits of A. muricata in a range that
varies between 306.00 – 321.87 mmol equivalent of trolox.100 g
-1
pulp (Vit et al., 2014). It has been shown that antioxidant activity
is aected by agroecological conditions, genetic aspects, production
techniques, maturity periods, storage conditions, and temperature,
including post-harvest management (Fuenmayor et al., 2016).
The content of phytochemicals present in these fruits has been
associated with the antioxidant activity exhibited by the pulp of A.
muricata (Clamens et al., 2014; Correa et al., 2012; Hernandez et al.,
2018; Jiménez et al., 2014; Vit et al., 2014).
Identication of acetogenins in fruit pulp of Annona muricata
(soursop)
It was evidenced that the ethanolic extracts of soursop pulp when
performing the Kedde test, present a pink ring (Figure 1), which is an
unequivocal indicator of the presence of acetogenins, which present
in their structure a characteristic lactonic ring responsible for the
coloration (Laguna-Hernández et al., 2015).
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Párraga et al. Rev. Fac. Agron. (LUZ). 2024 40(1): e2441075-6 |
These compounds are a group of bioactive secondary metabolites
present particularly in the Annonaceae family and mainly in the genus
Annona, both in fruits, seeds, and leaves (Gavamukulya et al., 2014;
Liaw et al., 2016).
Figure 1. Identication of the presence of acetogenins in the pulp
of the fruit of Anonna muricata (soursop) by applying
the Kedde test.
Acetogenins (ACGs) have antiproliferative eect in cancer
cell lines. It has been described that the distance between the
tetrahydrofuran group and the lactonic ring must be 13 carbons to
exhibit high and optimal anticancer activity, a structural conformation
that has been observed in ACGs obtained from fruits and mainly from
leaves of A. muricata (Gavamukulya et al., 2014; Liaw et al., 2016;
Paul et al., 2013; Ogbu et al., 2020).
Conclusions
The mesoendocarp of Annona muricata (soursop) located in
Manabí, Ecuador has an important content of bioactive compounds:
essential minerals (K, Ca, Zn, Mg), vitamin C, polyphenols; presence
of acetogenins and high antioxidant activity, properties that reduce
the risk of degenerative diseases and cellular aging. Therefore, its
consumption in the daily diet as fresh and processed fruit constitutes
a valuable nutritional and therapeutic alternative.
Literature cited
AOAC. (1990). Ocial methods of analysis of the association of ocial analytical
chemists (15th ed., pp. 823-826).
AOAC. (1995). Ocial Methods of Analysis (16th ed). Arlington, USA:
Association of Ocial Analytical Chemists.
Arrazola-Paternina, G. S., Barrera-Violeth, J. L. & Villalba-Cadavid, M. I.
(2013). Determinación física y bromatológica de la guanábana cimarrona
(Annona glabra L.) del Departamento de Córdoba. Orinoquia 17(2), 159-
166. https://dialnet.unirioja.es/servlet/articulo?codigo=5615249.
Badrie, N. & Schauss, A. G. (2010). Soursop (Annona muricata L.): Composition,
Nutritional Value, Medicinal Uses, and Toxicology. In: R. R. Watson and V.
R. Preedy, (eds), Bioactive Foods in Promoting Health. Oxford: Academic
Press, 621-643 pp. https://www.researchgate.net/publication/236834878
Baskaran, R., Ravi, R., & Rajarathnam, S. (2015). Thermal Processing Alters
the Chemical Quality and Sensory Characteristics of Sweetsop (Annona
squamosa L.) and Soursop (Annona muricata L.) Pulp and Nectar.
Journal of Food Science 81(1), S182–S188. https://pubmed.ncbi.nlm.nih.
gov/26642109/
Chan, C. L., Gan, R. Y. & Corke, H. (2016). The phenolic composition
and antioxidant capacity of soluble and bound extracts in selected
dietary spices and medicinal herbs. International Journal of Food
Science & Technology, 51(3), 565–573. https://www.researchgate.net/
publication/290437654
Clamens, C., Chacín, J., Hernández, C., Guerrero, R. & García, M. Ch. (2014).
Evaluación del contenido de fenoles y vitamina C del fruto de Annona
muricata L. (Guanábana) en diferentes estadios de crecimiento. Boletín
del Centro de Investigaciones Biológicas 48(1), 39 – 47. https://
produccioncienticaluz.org/index.php/boletin/article/view/19051
Correa, J., Ortíz, D., Larrahondo, J., Sánchez, M. & Pachón, H. (2012).
Actividad antioxidante en guanábana (Annona muricata L.): una
revisión bibliográca. Boletín Latinoamericano y del Caribe de Plantas
Medicinales y Aromáticas 11(2), 11-126. https://www.redalyc.org/
articulo.oa?id=85622734002
Coria-Téllez, A. V., Montalvo-Gónzalez, E., Yahia, E. M. & Obledo-Vázquez, E.
N. (2018). Annona muricata: A comprehensive review on its traditional
medicinal uses, phytochemicals, pharmacological activities, mechanisms
of action and toxicity. Arabian Journal of Chemistry, 11(5), 662–691.
https://www.sciencedirect.com/science/article/pii/S1878535216000058.
Fernández, V., Sulbarán, B., Ojeda de Rodríguez, G., Nava, R., Delgado, J.,
Berradre, M. & Peña, J. (2007) Contenido mineral de la guanábana (Annona
muricata) cultivada en el occidente de Venezuela. Boletín del Centro de
Investigaciones Biológicas 41(1), 86-95. https://produccioncienticaluz.
org/index.php/boletin/article/view/93.
Fuenmayor, M., Ettiene, G., Pérez-Pérez, E. & Raga, J. (2016). Efecto de la
forma de propagación y la frecuencia de fertilización nitrogenada sobre
la actividad antioxidante en frutos de guanábana (Annona muricata
L.). Revista de la Facultad de Agronomía (LUZ). 33,137-161. https://
produccioncienticaluz.org/index.php/agronomia/article/view/27196
García-Soto, A., Ettiene; G., Pérez-Pérez, E., Sandoval, L., Montilla, L. & Soto,
E. (2012). Propagación y fertilización del cultivo del guanábano. II:
Características químicas de frutos. Revista de la Facultad de Agronomía
29, 20-36. https://produccioncienticaluz.org/index.php/agronomia/
article/view/26879
Gavamukulya, Y., Abou-Elella, F., Wamunyokoli, F. & AEl-Shemy, H. (2014).
Phytochemical screening, anti-oxidant activity and in vitro anticancer
potential of ethanolic and water leaves extracts of Annona muricata
(Graviola). Asian Pacic Journal of Tropical Medicine 7, S355–S363.
https://pubmed.ncbi.nlm.nih.gov/25312150/
Hernández, C., Guerrero, R., Bracho, B. & Pérez-Pérez, E. (2018). Evaluación
del contenido de azúcares y perl mineral en diferentes estadios de
crecimiento del fruto de guanábana. Revista de la Facultad de Agronomía
(LUZ) 35, 202-222. https://produccioncienticaluz.org/index.php/
agronomia/article/view/27272
Hernández-Fuentes, G.A., García-Argáez, A.N., Peraza-Campos, A.L., Delgado-
Enciso, I., Muñiz-Valencia, R., Martínez-Martínez, F.J., Toninello, A,
Gómez-Sandoval, Z., Mojica-Sánchez, JP., Dalla-Via, L. & Parra-Delgado
H. (2019). Cytotoxic Acetogenins from the Roots of Annona purpurea.
International Journal of Molecular Sciences 20(8), 1-24. https://pubmed.
ncbi.nlm.nih.gov/31014011/
Jiménez, V. M., Gruschwitz, M., Schweiggert, R. M., Carle, R., & Esquivel,
P. (2014). Identication of phenolic compounds in soursop (Annona
muricata) pulp by high-performance liquid chromatography with diode
array and electrospray ionization mass spectrometric detection. Food
Research International 65, 42–46. https://www.sciencedirect.com/
science/article/abs/pii/S0963996914003664.
Jiménez-Zurita, J., Balois, R., Alia, I., Sánchez, L., Jiménez, E., Bello, J., García,
J. & Juárez, P. (2017). Cold storage of two selections of Soursop (Annona
muricata L.) in Nayarit, Mexico. Journal of Food Quality 1(1), 1-9.
https://www.researchgate.net/publication/315057719_Cold_Storage_of_
Two_Selections_of_Soursop_Annona_muricata_L_in_Nayarit_Mexico.
Laguna-Hernández, G., Brechú-Franco, A. E., De la Cruz-Chacón, I. & González-
Esquinca, A. R. (2015). Histochemical detection of acetogenins and
storage molecules in the endosperm of Annona macroprophyllata Donn
Sm. seeds. European journal of histochemistry 59(3), 239-242. https://
pubmed.ncbi.nlm.nih.gov/26428881/
Latham, M. (2002). Nutrición humana en el mundo en desarrollo. Organización
de las Naciones Unidas para la Agricultura y la Alimentación Colección
FAO: Alimentación y. Nutrición. N° 29. Roma, Italia. Depósito de
documentos de la FAO. https://biblioteca.hegoa.ehu.eus/registros/9536
León-Méndez, G., Granados, C., Osorio, M. (2016). Caracterización
de la pulpa de Annona muricata L. cultivada en el Norte del
Departamento de Bolívar, Colombia. Revista Cubana de Plantas
Medicinales 1(4), 175-181. http://scielo.sld.cu/scielo.php?script=sci_
arttext&pid=S1028-47962016000400012
Liaw, C. C., Liou, J. R., Wu, T. Y., Chang, F. R. & Wu, Y-C. (2016). Acetogenins
from Annonaceae. Progress in the Chemistry of Organic Natural Products
101, 113-230. https://link.springer.com/book/10.1007/978-3-319-22692-
7.
McDougall, G. J. (2016). Phenolic-enriched foods: sources and processing for
enhanced health benets. Proceedings of the Nutrition Society 76(2),
163–171. https://pubmed.ncbi.nlm.nih.gov/27804893/
Nam, J., Park, Y., Jang, H. & Rhee, Y. (2017). Phenolic compounds in dierent
parts of young Annona muricata cultivated in Korea and their antioxidant
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rev. Fac. Agron. (LUZ). 2024, 41(1): e244107 January-March. ISSN 2477-9407.6-6 |
activity. Applied Biological Chemistry 60(1), 535-543. https://www.
researchgate.net/publication/318843216
Oboh, G., Ademosun, A., Akinleye, M., Omojokun, O., Boligon, A. & Athayde,
M. (2015). Starch composition, glycemic indices, phenolic constituents,
and antioxidative and antidiabetic properties of some common tropical
fruits. Journal Ethnic Foods 2(1), 264-273. https://core.ac.uk/download/
pdf/82500992.pdf
Ogbu, P., Ugota, E., Onwuka, R., Ogbu, I. & Aloke, Ch. (2020) Eect of
acetogenin fraction of Annona muricata leaves on antioxidant status and
some indices of benign prostatic hyperplasia in rats. Redox Report 25(1),
80-86. https://pubmed.ncbi.nlm.nih.gov/32878595/
Ojeda, G., Coronado, J., Nava, R., Sulbarán, B., Araujo, D. & Cabrera, L. (2007)
Caracterización sicoquímica de la pulpa de la guanábana (Annona
muricata L.) cultivada en el Occidente de Venezuela. Boletín del Centro
de Investigaciones Biológicas 41(2), 151-160. https://www.researchgate.
net/publication/284705114
Paul, J., Gnanam, R., Jayadeepa, R. M. & Arul, L. (2013). Anti-cancer activity
on graviola, an exciting medicinal plant extract vs various cancer cell
lines and a detailed computational study on its potent anti-cancerous
leads. Current Topics in Medicinal Chemistry, 13(14), 1666-1673. https://
pubmed.ncbi.nlm.nih.gov/23889049/.
Ramírez, R., Arenas, L., Acosta, K., Yamarte, M. & Sandoval, L. (2012). Efecto del
escaldado sobre la calidad nutricional de la pulpa de guanábana (Annona
muricata L.). Revista Iberoamericana de Tecnología Postcosecha 13(1),
48-57. https://www.redalyc.org/pdf/813/81324433007
Ramírez, A., & Pacheco, E. 2011. Composición química y compuestos bioactivos
presentes en pulpas de piña, guayaba y guanábana. Interciencia 36(1), 71-
75. https://www.redalyc.org/pdf/339/33917727011.pdf
Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C.
(1999) Antioxidant activity applying an improved ABTS radical cation
decolorization assay. Free Radical Biology and Medicine 26, 1231-1237.
https://pubmed.ncbi.nlm.nih.gov/10381194/
Sandoval, L., Ettiene, G., Pérez-Pérez, E., Fuenmayor, M., Raga, J., & Silva, N.
(2014). Determinación de avonoides en frutos de Annona muricata L.
provenientes de plantas diferentes, empleando cromatografía líquida
de alta resolución. Revista Facultad Agronomía-(LUZ). Supl. 1, 785-
800. https://www.revfacagronluz.org.ve/PDF/suplemento_2014/ta/
tasupl12014785800.pdf
Singleton V, Orthofer R., & Lamuela- Raventos, R. (1999) Analysis of total
phenols and other oxidation substrates and antioxidants by means of
Folin-Ciocalteu reagent. Methods Enzymology 299, 152-178. https://
www.sciencedirect.com/science/article/abs/pii/S0076687999990171
Woisky R, & Salatino A (1998) Analysis of propolis: some parameters and
procedures for chemical quality control. Journal of Apicultural Research.
37, 99-105. https://www.tandfonline.com/doi/abs/10.1080/00218839.199
8.11100961
Vit, P., Santiago, B., & Pérez-Pérez, E. M. (2014). Composición química y
actividad antioxidante de pulpa, hoja y semilla de guanábana Annona
muricata L. Interciencia, 39(5), 350-353. https://www.redalyc.org/
pdf/339/33930879008.pdf.