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Abstract

Understanding the stocks of Soil Organic Carbon (SOC) and elucidating 
the variables influencing its spatial distribution within a small watershed 
are imperative for advancing targeted climate change mitigation strategies, 
specifically directed toward soil and water conservation. The selection of 
this watershed is predicated upon its three-decade-long implementation of 
diverse soil and water conservation practices. Therefore, the objective of this 
study was to analyze land use, vegetation cover, slope and soil and water 
conservation practices (SCWP) as factors that influence the variability and 
spatial distribution of soil organic carbon in a small basin in the Mixteca Alta 
region of the state of Oaxaca.  Mexico. Soil samples (77) were collected to 
determine SOC storage. These samples were interpolated using the QGIS 
Smart-Map plugin to obtain a spatial COS predictive model. Thematic 
maps were generated for each factor. Areal statistics, Pearson’s correlation 
and principal component analysis (PCA) were performed to explain COS 
variability. The results in the variability of SOC with respect to vegetation 
cover and land use, showed adult pine plantations with the highest value of 
SOC with 36.8 t.ha-1, followed by seasonal agriculture with 28.8 t.ha-1. The 
most effective management practice for storing COS was the stone terrace 
with 35.0 t.ha-1. Our results indicate that vegetation cover and land use 
complemented by soil and water conservation practices are the main drivers 
of SOC storage in small watersheds.
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Resumen

Comprender los niveles del Carbono Orgánico del Suelo (COS) 
y las variables que controlan su distribución en una pequeña cuenca 
permitirá promover estrategias de mitigación contra el cambio 
climático orientadas a la conservación de suelo y agua.  La selección 
de esta cuenca se basa en la implementación durante tres décadas 
de diversas prácticas de conservación de suelo y agua. Por ello, el 
objetivo de este estudio fue analizar el uso de la tierra, la cubierta 
vegetal, la pendiente y las prácticas de conservación del suelo y 
agua como factores que influyen en la variabilidad y la distribución 
espacial del carbono orgánico del suelo en una pequeña cuenca 
en la región de la Mixteca Alta del estado de Oaxaca, México. Se 
tomaron 77 muestras de suelo para determinar el almacenamiento 
de COS. Se realizó la interpolación de las observaciones de COS 
utilizando el complemento QGIS Smart-Map para obtener un modelo 
predictivo COS espacial. Se generaron mapas temáticos para cada 
factor. Se realizaron análisis estadísticos por área, correlación de 
Pearson, y análisis de componentes principales (PCA) para explicar 
la variabilidad espacial de COS. Los resultados en la variabilidad del 
COS con respecto a la cobertura vegetal y el uso de la tierra, mostraron 
a las plantaciones de pino adulto con el mayor valor de COS con 
36,8 t.ha-1, seguido de la agricultura de temporal con 28,8 t.ha-1. La 
práctica de gestión más eficaz para almacenar COS fue la terraza de 
piedra con 35,0 t.ha-1. Los resultados indican que la cobertura vegetal 
y el uso de la tierra complementados con prácticas de conservación 
del suelo y agua son los principales impulsores del almacenamiento 
de COS en pequeñas cuencas hidrográficas.

Palabras clave: sistemas de información geográfica, manejo de 
cuencas, QGIS Smart-Map, prácticas de conservación de suelo y 
agua.

Resumo

Compreender os stocks de Carbono Orgânico do Solo (COS) e 
elucidar as variáveis   que influenciam a sua distribuição espacial dentro 
de uma pequena bacia hidrográfica são imperativos para o avanço 
de estratégias específicas de mitigação das alterações climáticas, 
especificamente dirigidas à conservação do solo e da água. A seleção 
desta bacia hidrográfica baseia-se na implementação, ao longo de 
três décadas, de diversas práticas de conservação do solo e da água. 
Portanto, o objetivo deste estudo foi analisar o uso do solo, a cobertura 
vegetal, a declividade e as práticas de conservação do solo e da água 
(SCWP) como fatores que influenciam a variabilidade e a distribuição 
espacial do carbono orgânico do solo em uma pequena bacia na 
região de Mixteca Alta do estado de Oaxaca. México. Amostras de 
solo (77) foram coletadas para determinar o armazenamento de SOC. 
Essas amostras foram interpoladas usando o plugin QGIS Smart-Map 
para obter um modelo preditivo espacial de COS. Foram gerados 
mapas temáticos para cada fator. Estatísticas de área, correlação de 
Pearson e análise de componentes principais (ACP) foram realizadas 
para explicar a variabilidade do COS. Os resultados na variabilidade 
do SOC em relação à cobertura vegetal e uso do solo, mostraram as 
plantações de pinus adulto com o maior valor de SOC com 36,8 t.ha-1, 
seguidas pela agricultura sazonal com 28,8 t.ha-1. A prática de manejo 
mais eficaz para armazenamento de COS foi o terraço de pedra com 
35,0 t.ha-1. Nossos resultados indicam que a cobertura vegetal e o uso 

da terra complementados por práticas de conservação do solo e da 
água são os principais impulsionadores do armazenamento de SOC 
em pequenas bacias hidrográficas.

Palavras-chave: sistemas de Informação Geográfica, gestão de bacia 
hidrográfica, QGIS Smart-Map, práticas de conservação do solo e da 
agua.

Introduction

Since 2011, concentration of carbon dioxide (CO2) in the 
atmosphere have increased, reaching an annual average of 410 ppm 
(IPCC,2021). Soil has the largest reserves of terrestrial organic carbon; 
current estimates of the global stock of soil organic carbonrange from 
1,500 to 2,400 Pg C, according to Lal et al. (2021). Soil organic carbon 
(SOC) is the C that remains in the soil after partial decomposition 
of all added organic residues and is produced by living organisms 
(Lefèvre, 2017).SOCplays a critical role in climate change mitigation 
and food security (Wang et al., 2020), and its distribution is spatially 
and temporally variable (Wiesmeier et al., 2019). The variability and 
spatial distribution of SOC is partly controlled by environmental 
conditions such as vegetation cover and land use (Borůvka et al., 
2022; Yescas et al., 2018).

Determining the variables that control soil organic carbon 
distribution at the small watershed scale is important for planning 
and implementing appropriate soil and water conservation practices 
(SWCP). These practices are used to reduce soil erosion, but also 
to retain large amounts of organic carbon in the same sediments 
to reduce greenhouse gas emissions to the atmosphere (Mekonnen 
and Getahun, 2020). Considering the intense land degradation that 
affects almost half of Mexico’s territory, the Mexican government 
has implemented various public policies with subsidies, under which 
landowners have implemented land conservation practices. However, 
these impacts have not been evaluated in terms of carbon storage 
(Cotler et al., 2015). In this sense, this study aims to provide reliable 
quantitative data that will allow decision and policymakers to further 
promote SWCP in Mexico.

The objective of this study was to evaluate the effects of land use, 
vegetation cover, slope, and soil and water conservation practices on 
the variability and spatial distribution of soil organic carbon (SOC) 
in a small watershed in the Mixteca Alta region of Oaxaca State, 
Mexico.

Material and methods

Study area
The study area is a 44.6 ha small watershed, known as “El Arenal” 

located in the High Mixteca region in the municipality of San Miguel 
Tulancingo, state of Oaxaca, México, between coordinates 97°27’ 
W, 17°45’ N, at 2,200 m above sea level (figure 1). The climate of 
the study area is temperate (Cw0). The precipitation is 544.7 mm 
per year and the average temperature is 15.9 ºC. The study area is 
characterized by steep slopes, low vegetation cover and erosion. In 
this small watershed, there are soil and water conservation practices 
such as land terraces, stone terraces, stone dams, gabion dams, 
ditches, reforestation with pines and contour furrows.This study 
area was chosen because it is representative, since it has a variety of 
soil and water conservation practicesimplemented in the watershed 
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during the last 30 years, which allows comparisons of soil organic 
carbon estimates.

Figure 1. Location of study area. 

The study area is a small watershed with 44.6 ha, called “El 
Arenal”, located in the municipality of San Miguel Tulancingo, 
Oaxaca, México. The yellow and red dots correspond to the 77 COS 
samples collected in the field.

Preparation of the SOC map
The creation of the map SOC was divided into six steps: a) 

selection of sampling sites, b) soil sampling, c) determination of 
SOC, d) data statistics, e) interpolation map, and f) validation map, 
as indicated below:

a) Selection of sampling sites: a manual digitization of a Sentinel-2 
satellite image from 26/09/2018 was performed to distinguish land 
uses at 10 m spatial resolution. The digitized land use polygons were 
used to design a stratified simple random sample (Gruijter et al., 
2006), taking into account that SOC varies spatially due to vegetation 
cover and land use.

b) Soil sampling: a single soil sample of one kilogram from the 
superficial layer (0 to 30 cm) was collected from the selected site 
or its immediate vicinity (Borůvkaet al., 2022; Yescas et al., 2018; 
Pazet al., 2016). Land use and management, hydrologic condition, 
and soil-water conservation practices were recorded at each site. The 
total number of sampling sites was 77 (figure 1).

c) Determination of SOC: The soil samples collected were 
analysed in the laboratory to obtain organic carbon in g.kg-1according 
to the method of Walkley and Black (1934), the bulk density in g.cm-3 

was determined by the paraffin method and the percentage of rock 
fractionation that represents particles > 2 mm with respect to a known 
volume. Subsequently, the SOC expressed in t.ha-1 was determined 
according to the formula used by Nabiollahi et al. (2021) proposed by 
Penman et al. (2003):

SOC = OC• Bulk Density • Depth •Coarse Fragments• 10        (1)

Where: SOC = the soil organic carbon stock for soil of interest in 
t.ha-1; OC = concentration of organic carbonin g / kg; Bulk Density = 
the mass of soil sample per volume in the fine soil fractionin g.cm-3; Depth 
= sampling depth or thickness or soil layerin m; Coarse Fragments = 
1 – (% volume of coarse fragments / 100); the final multiplier of 10 
is introduced to convert units to t.ha-1. These values   measured in the 
laboratory will be called the observed SOC.

d) Data statistics: The statistical values that characterize the 
sample were analysed and extracted by means of its measures of 
centrality, position and dispersion, with the statistical panel tool in 
QGIS. Also, distribution pattern analysis was performed to determine 
if the points have aclusteringor dispersion pattern, with the QGIS 
Nearest NeighbourIndex (NNI) tool (Ose, 2018).

e) Interpolation map: the sample was divided into 70 % training 
data and 30 % validation data using the random selection module in 
QGIS. The method used for interpolation was developed and proposed 
by Pereira et al. (2022) in the Smart-Map Plugin Tool, installed from 
the QGIS Plugin Repository. This tool uses Machine Learning (ML) 
algorithms. The area-weighted average of the predicted SOC will be 
called the estimated SOC.

f) Validation map: The accuracy of the prediction was evaluated 
by comparing the estimated values  with the actual observations at 
validation points Z (xi) according to Boubehziz et al. (2020).

Factors related to SOC 
Land Use
For the classification of satellite imagery, a free and open-source 

plugin for QGIS was used, developed by Luca Congedo and known 
as Semi-Automatic Classification Plugin (SCP). Sentinel-2 satellite 
imagery data with a spatial resolution of 10 m, taken September 26, 
2018 was used to create the land use map.

Vegetation cover
Soil Adjusted Vegetation Index (SAVI) was used for 

determiningthe percentage of vegetation cover using the method 
proposed by Bingfang and Qiangzi (2004) which assumes that each 
pixel receives two signals, one coming from soil and the other from 
vegetation. The formula for calculating vegetation cover is as follows:

                                                                                                   (2)

Where: % CV is the percentage of vegetation cover; SAVI is the 
Soil Adjusted Vegetation Index observed in the pixel; SAVIbs is the 
Soil Adjusted Vegetation Index of a pixel withbare soil and SAVIveg 
corresponds of a pixel completely covered with vegetation.

Slope
The slope of the terrain in percentage, was calculated with the 

Slope tool using QGIS and a digital elevation model (DEM) with a 
spatial resolution of 15 m (INEGI, 2020); the output slope dataset 
was classified according to Jahn et al. (2006) into the following 
categories: flat (0-1 %), very gently sloping (1-2 %), gently sloping 
(2-5 %), sloping (5-10 %), strongly sloping (10-15 %), moderately 
steep (15-30 %), steep (30-60 %), and very steep (> 60 %). Next, we 
used the Profile tool, a QGIS add-on that allows us to draw lines on 
the elevation base map and create elevation profiles. 

Soil and water conservation practices (SWCP)
SWCP wererecordedfor the 77 samplingsites in the field. Sixty-

nine sampling points were within the small watershed; 33 of them had 
SWCP, while 36 had no practice (the remaining 8 points are outside 
the small micro watershed and their value was that they were used to 
correctly interpolate the SOC map outside the boundaries). Eachsite 
was characterized with its respective SWCP. Land management 
practices (recorded at the point level)  were spatialized by Thiessen 
polygons. These polygons were used to assign 0 to locations without 
land conservation practices and 1 to locations with land conservation 
practices. Pearson’s correlation coefficient was estimated to examine 
the relationship between soil conservation practices and SOC.

                                                                                                    1 
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Principal Component Analysis (PCA)
A principal component analysis (PCA) was performed to decipher 

the grouping of environmental variables that explain variability in 
the small watershed. The ACP was conducted in ArcMap 10.8, with 
the variables in raster format: SOC land use, vegetation cover, soil 
conservation practices, and slope. According to Figueroa et al. (2018), 
the principal components with the highest eigenvalues explain the 
largest percentage of variability.

Results and discussion 

Descriptive statistics of observed SOC
The results ofdescriptive statistics of the observed soil organic 

carbon (t.ha-1) at 0–30 cm depth indicates aminimum value: 1.58, 
maximum value: 84.72, range: 83.14, mean value: 25.74, standard 
deviation: 18.70 and variation coefficient: 73,  these results show the 
SOC magnitudesashighly variable and heterogeneous. On the other 
hand, the results of the analysis of the distribution pattern estimated 
with the QGIS nearest neighbour analysis tool exposes an average 
observed distance of 76.85, an average expected distance of 59.99 
anda NNI of 1.28. These results exhibit two facts, 1) the average 
observed distance is greater than expected and 2) a clustered pattern 
(NNI >1). This variability is explained because samples were obtained 
at an average distance of 90 m, which can vary with respect to the 
position of the slope, land use, vegetation cover, and management. 
Yescas et al. (2018) observed that the behaviour of the variability in 
the SO Cis mainly due to land use. 

Spatial estimation of SOC
The map of SOC in t.ha-1 resulted from interpolation with the 

machine learning algorithm implemented in the Smart Map plugin is 
depicted in figure 2.The cross-validation show a mean prediction error 
(ME) of  0.98 t.ha-1, a root-mean-square prediction error (RMSE) of 
3.770 t.ha-1 and a high value of  R2 (0.96). This R2 indicated a strong 
correlation between predictors and observed SOC. The RMSE was 
lower than the one obtained by Yescaset al. (2018) of 4.69 t.ha-1 with 
ordinary kriging (KO) model. This implies a better fit of the model 
ML with respect to the KO.The total content of SOC predicted in the 
small watershed was obtained by (previously rescaling to the spatial 
resolution of the raster dataset) summing up all corresponding pixels 
of the study area totalling 101,826 t.ha-1 in 44.2 ha, while the average 
SOC was 23.77 t.ha-1. Paz et al. (2016) associated this value to areas 
without apparent vegetation and xeric scrub. In this case, our study 
area has all forms of water erosion in addition to low vegetation cover.

On the map, the areas marked with blue are those with the lowest 
COS content and the red are the areas with the highest storage. The 
cross-validation resulted ina strong correlation between predictors 
and observed SOC whit a R2 (0.96).

Factors that influence SOC storage in the small watershed 

Figure 2. Map SOC Prediction (t.ha-1) and cross-validation 
results. 

Figure 3.  Environmental variables cross-correlated to soil organic 
carbon.  a) Vegetation and land use, b) Vegetation cover 
(%), c) Slope (%), and d) Soil and water conservation 
practices.

Vegetation and land use
Variability of SOC at each site was partially controlled by land use 

and vegetation (Table 1). The largest carbon stocks were associated 
with areas of adult pine plantations; however, they represented only 
1.32 ha of the study area. Despite, this value represents a small area 
within the small watershed, this result is still outstanding. This is 
because if we would want to increase the carbon storage in soil, an 
effective way to do this, is by planting trees. Second, rainfed agriculture 
showed the highest SOC value in the study area (estimated: 25.6 t.ha-1, 
observed: 28.8 t.ha-1), distributed over 15.6 ha, which emphasizes 
the importance of rainfed agriculture for soil carbon storage. Third, 
thorny scrub showed similar results to rainfed agriculture (estimated: 
24.4 t.ha-1, observed: 25.9 t.ha-1). The spatial variability of vegetation 
and land use along the small watershed is shown in figure 3a.

Table 1. SOC variability by land use.

Land use

Area SOC 
observed 

value

SOC 
estimated 

value

Total 
content of 
SOC in the      
watershed

Reference 
value

 Paz et al. 
(2016) 

(ha) (t.ha-1) (t) (t.ha-1)

Adult pine Plantation 1.2 36.8 29.6 3,544.6 65.8

Rainfed agriculture 15.6 28.8 25.6 39,654.1 46

Thorn scrub 14.4 25.9 24.4 35,186.1 28

Gallery vegetation 10 17.6 20.1 20,100.6 32.9

Bare soil 3 6.4 10.8 3,340.5 19

Water 0.4 0 0 0 0
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Vegetation cover
The 74 % of the study area is dominated by sites with vegetation 

cover less than 50 %, and areas with vegetation cover greater than 
75 % account for only 3.7 %. According to our results, the greater 
the vegetation cover, the greater the storage of SOC. The areas with 
cover > 75 % have an estimated average of  30 t.ha-1 as adult pine 
plantation, those with values of vegetation cover less than 50 % 
have an estimated average of 21.1 t.ha-1, which explains the average 
data for the small watershed.  These results are consistent with those 
of  Nabiollahi et al. (2021), which indicate that the loss of natural 
vegetation cover leads to a reduction of SOC. Therefore, to increase 
soil carbon reserves, it is necessary to increase vegetation cover. The 
spatial distribution of vegetation cover along the small watershed is 
shown in Figure 3b.

Slope and profile analyses on the small watershed
There are significant differences between SOC and the different 

slope percentages. The average results for each slope category are 
as follows: flat (13.4 t.ha-1), very gently sloping (21.4 t.ha-1), gently 
sloping (25.8 t.ha-1), sloping (24.1t.ha-1), strongly sloping (20.2 t.ha-1), 
moderately steep (21.5 t.ha-1), steep (28.5 t.ha-1). Our results showed 
no significant relationship between slope and soil organic carbon 
content in accordance whit Gadisa and Hailu (2020) and Bai and 
Zhou (2019). This can be explained by the result obtained from cross-
sectional profileconducted in the lower part of the small watershed 
(Figure 4). Here it can be seen that regardless of the slope category, 
the SOC value is varying according to land use. In this sense, the 
profile shows an agricultural use with values up to 49 t.SOC.ha-1  with 
a slope of 10-15 %, which contrasts in this profile with 9 t.SOC.ha-1  

of the bare soil in the same slope category. 

was the gabion filter dam with 5.1 t.ha-1. This value was unexpected 
because Mekonnen & Getahun (2020) found that gabion dam trapped 
106.29 t.ha-1 in 5104 m3 sediment. However, this can be explained 
because water that flows into the gabion dam probably washes soil, 
leaches the SOC or transports it out the reservoir. Therefore, it is 
suggested to analyse the sediment trapped in these sediment storage 
dams at different depths.

Table 3 shows the observed SOC values   at the sampled sites 
in relation to soil depth and SWCP.  Severely degraded areas and 
with no soil are associated with lower SOC storage and lack of soil 
management practices. Sites deeper than 30 cm, on the other hand, 
were associated with the presence of SWCP.The difference between 
the observed and estimated values is due to the fact that the area 
calculated comes from the geometry of the Thiessen polygons, which 
in turn correspond to the spatial distribution of the sample points.

Table 2. SOC variability respect to soil and water conservation 
practices.

Thematic 
Class

Soil and water conservation 
practices

SOC Estimated 
Value (t.ha-1)

SOC Observed 
Value (t.ha-1)

1 Land terrace 25.3 27.3

2 Adult pine plantation 26.6 29.0

3 Stone terrace 29.6 35.0

4 Furrowed to the contour 26.7 21.4

5 Gabion filter dam 8.6 5.1

6 Accommodated stone filter 
dam 20.1 17.5

7 Reforestation with pine and 
infiltration trench 25.0 32.1

8 MIAF (Corn and young fruit 
trees) 14.8 8.4

9 None (Absence of soil and 
water conservation practices) 22.3 21.2

Table 3. SOC variability with respect to the depth of the sampled 
soil.

Soil Depth
(cm)

SOC Observed Value 
(t.ha-1) Soil and water conservation practices 

3 1.6 None

5 2.3 None

15 10.3 None

20 15.9 None – Pine Plantation

25 32.6 None – Pine Plantation

30 27.0

Land terrace, Reforestation with pine, 
Stone terrace, Furrowed to the contour, 

Gabion filter dam, Accommodated stone 
filter dam, Reforestation with pine and 

infiltration trench, MIAF

Principal Component Analysis
The principal components (PCs) captured the variability of 

the original variables in the following proportions: PC1 (49.34 %), 
PC2 (40.65 %), PC3 (9.88 %), PC4 (0.09 %) and PC5 (0.02 %). The 
accumulative value for the first three components was 99.8%. When 
analysed the weights of the principal components in the matrix of 

Figure 4. Profile analyses the lower part in small watershed, 
regarding elevation, slope, land use and SOC storage. The 
variation in soil organic carbon (SOC) is not determined by the slope 
but rather by vegetation and land use.

Soil and water conservation practices (SWCP)
Table 2 shows that stone terrace was the soil management 

practice that stored the most carbon in the surface layer (first 30 
cm), with 35 t.ha-1. Second, aforestation with adult pines combined 
with an infiltration trench with 32.1 t.ha-1. The management practice 
equivalent to bare soil was the combination of fruit trees interspersed 
with corn, commonly known in Mexico as MIAF (corn and fruit trees 
grown simultaneously); these trees are still in their early stages of 
growth and are planted with a spacing of 8 meters between rows. The 
soil management method that stored the least SOC in the topsoil layer 
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eigenvalues and eigenvectors, PC1 revealed that the COS variable 
(0.50) and the vegetation cover variable (0.86) were directly and 
proportionally related to the component, as they had a positive sign 
in the loading. PC2 disclosed that the COS variable (-0.86) and the 
vegetation cover variable (0.50) were representative but with inverted 
signs in this relationship. Meanwhile, in PC3, it was shown that 
only the Slope variable (0.99) was representative in a directly and 
proportionally related manner to that component. Furthermore, the 
Pearson’s correlation coefficient obtained to examine the relationship 
between the four explaining variables (i.e., land use, vegetation cover, 
conservation practices and slope) and SOC was 0.16, 0.08, 0.06 and 
0.04, respectively. These values align with the findings of Yescas 
et al. (2018), Bai and Zhou (2019), and Gadisa and Hailu (2020), 
supporting the notion that land use and vegetation cover primarily 
influence SOC variability, while slope carries a lower weight.

Conclusion

The analysis of observed and estimated SOC in a small 
watershed revealed significant variability and heterogeneity. The 
SOC distribution pattern was successfullymodeledwith spatial 
interpolation and subsequently related to four explaining variables 
includingland use, vegetation cover, conservation practices and slope. 
Soil and water conservation practices played a crucial role, enhancing 
SOC stock by preventing soil erosion. To safeguard SOC reserves, it 
is crucial to enhance vegetative cover and supplement land use with 
SWCP. Through these measures, not only can erosion be effectively 
managed, but they also play a pivotal role in curbing CO2 emissions, 
thereby mitigating the impact of global warming.
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