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Abstract

Climate change limits the release of radiation from the earth’s 
atmosphere, a product of the accumulation of greenhouse gases (GHG) such 
as CO2, methane, ammonia, among others. Ruminants contribute methane to 
the atmosphere when fed with low quality forage diets, which in the light of 
different conservationist organizations, qualifies them as major pollutants. 
When Venezuela signed the Kyoto Protocol in 2004, it undertook to establish 
a GHG measurement system, as well as scientific research on the subject; 
however, there are still no research groups in the country dedicated to the 
permanent measurement of GHG contributions from these production 
systems. Grazing pastures and forages of medium to low quality, with high 
contents of cell wall of low degradability, produce a positive balance towards 
the generation of methane of enteric origin, which could be mitigated if these 
feeding schemes are improved, tending to improve the digestibility of basic 
diets. Methane production by these production systems in the state of Zulia 
is calculated at 209 Gg, 7.1 % of the total inventoried at the national level; 
however, the lack of research in this area, as well as of systematic inventories 
of local herds, prevents obtaining accurate data in this regard.
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Resumen

El cambio climático limita la liberación de radiación de la 
atmósfera terrestre, producto de acumulación de gases de efecto 
invernadero (GEI) como el CO2, metano, amoniaco, entre otros. 
Los rumiantes aportan metano a la atmósfera al ser alimentados 
con dietas forrajeras de baja calidad, lo que a la luz de diferentes 
organizaciones conservacionistas, les califica como grandes 
contaminantes. Venezuela al suscribir el Protocolo de Kyoto en 2004 
se compromete a establecer un sistema de medición de GEI, así 
como investigación científica al respecto, sin embargo, actualmente 
aún son inexistentes en el país los grupos de investigación dedicados 
a la medición permanente de los aportes de GEI por parte de estos 
sistemas de producción. La alimentación basada en pastos y forrajes 
de mediana a baja calidad, con altos contenidos de pared celular de 
baja degradabilidad, producen un balance positivo hacia la generación 
de metano de origen entérico, lo que podría mitigarse si se mejoran 
dichos esquemas alimenticios a fin de mejorar la digestibilidad de 
las dietas básicas. La producción de metano por estos sistemas de 
producción en el estado Zulia, se calculan en 209 Gg, es decir, 7,1 
% del total inventariado a nivel nacional, sin embargo, la carencia de 
investigación en esta área, así como de inventarios sistemáticos de 
rebaños locales, impide obtener datos certeros en este sentido.

Palabras clave: cambio climático, Metano, Bovinos Doble Propósito, 
Pastoreo, Suplementación.

Resumo

A mudança climática limita a liberação de radiação da atmosfera 
terrestre como resultado do acúmulo de gases de efeito estufa 
(GEE), como CO2, metano, amônia, entre outros. Os ruminantes 
contribuem com metano para a atmosfera ao serem alimentados 
com dietas de forragem de baixa qualidade, o que, de acordo com 
várias organizações de conservação, os qualifica como grandes 
poluentes. Quando a Venezuela assinou o Protocolo de Kyoto em 
2004, comprometeu-se a estabelecer um sistema de medição de 
GEE, bem como pesquisas científicas a esse respeito. No entanto, 
ainda não existem no país grupos de pesquisa dedicados à medição 
permanente das contribuições de GEE desses sistemas de produção. 
As pastagens e forragens de média a baixa qualidade, com alto teor de 
parede celular e baixa degradabilidade, produzem um saldo positivo 
na geração de metano de origem entérica, que poderia ser mitigado 
se esses esquemas de alimentação fossem aprimorados por meio da 
melhoria da digestibilidade das dietas básicas. A produção de metano 
por esses sistemas de produção no estado de Zulia é estimada em 
209 Gg, 7,1 % do total nacional. No entanto, a falta de pesquisas 
nessa área, bem como a falta de inventários sistemáticos dos rebanhos 
locais, nos impede de obter dados precisos a esse respeito.

Palavras-chave: mudanças climáticas, Metano, Gado de dupla 
finalidade, Pastagem, Suplementação.

Introduction

Despite being one of the most important oil producers in the world, 
Venezuela is a country that contributes a low level of Greenhouse Gas 
(GHG) emissions, a similar situation in the case of methane of enteric 
origin (MARNR, 2005). In 1994, Venezuela ratified the United Nations 
Framework Convention on Climate Change (UNFCCC) and in 2004 

acceded to the Kyoto Protocol through Official Gazette No. 38.081 of 
December 7, 2004 (Venezuela, 2004, 2010). Venezuela’s adherence to 
this convention imposes a series of commitments to be fulfilled, such 
as the generation of inventories of GHG emissions by source and their 
absorption by sinks, updated periodically; development of national 
and/or regional programs to mitigate climate change and adapt to 
the potential effects, strengthening scientific and technical research, 
promoting the development of technologies, practices and processes 
to control, reduce or prevent anthropogenic GHG emissions.

Reading the document of the First National Communication 
on Climate Change in Venezuela (MARNR, 2005), the lack of 
institutions and research groups actively registering GHG emissions 
scientific data, especially in agricultural production systems, is clearly 
documented. This leads the discussion to the non-existence of GHG 
emission estimates in livestock production systems in Venezuela, 
which places the country in a condition of non-compliance with the 
commitments acquired with the adhesion to the convention.

On the other hand, ruminant feeding in these systems is based 
on medium to low quality pasture and forage, which implies a high 
contribution of methane to the atmosphere (Niggli et al., 2009; Vargas 
et al., 2012).  However, the supplementation options used by livestock 
producers are usually commercial concentrate feeds or raw materials 
with high contents of easily digestible carbohydrates, which favor the 
digestion of the base diet and consequently, a decrease in emissions 
(Hristov et al., 2013).

At present, the product of a political and economic crisis that has 
driven the costs of goods and services to a state of hyperinflation, 
as well as the foreign origin of raw materials for the formulation of 
concentrated feed, an activity highly dependent on foreign currencies 
controlled and limited by the state, are factors that have increased the 
costs of these supplements. This situation has resulted in a decrease in 
production levels in dual-purpose livestock, but also in an increase in 
the generation of GHGs such as methane and, consequently, a decrease 
in the efficiency of dietary energy use (Waghorn and Hegarty, 2011; 
Vargas et al., 2012).

Under a situation like the one described, it is necessary to 
generate research oriented to the efficient use of pastures and forages 
as basic feeds in the diet of ruminants, as well as the valuation of 
supplementary raw materials whose detailed knowledge of chemical 
composition, digestibility and biological quality in general, will allow 
a rational use that complements the basic pasture and guarantees an 
optimal rumen functioning, with minimum emission of GHGs such 
as methane.

The objective of this review is to analyze the existing information 
in the literature on ruminant feeding systems and, based on the 
available regional herd data, to calculate the production of enteric 
methane by these herds in order to determine if there really is a high 
contribution of this gas to the pool of GHG produced in the country.

Methods

This review is referred to the calculation of methane production 
by regional bovine herds, however, the inexistence of specialized 
national literature on this aspect of digestive physiology in Venezuelan 
institutions, lead to the use of literature originated in other latitudes, 
where there is the capacity to carry out measurements of methane 
production of enteric origin under different experimental conditions. 
This bibliographic support allowed documenting the physiological 
and metabolic processes that give rise to methane as a result of the 
use of different dietary regimes; however, it is pointed out that such 
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Table 1. Representative livestock categories.
Main livestock 

categories Livestock subcategories

Mature milking cows 
or buffaloes

High-producing cows that have calved at least once 
and are used primarily for milk production.

Low-producing cows that have calved at least once 
and are used primarily for milk production.

Other mature cattle 
or non-lactating 

buffaloes

Females
Cows used to produce calves for meat

Cows used for more than one productive purpose: 
milk, meat, leather.

Males
Bulls used primarily for reproductive purposes

Steers used mainly for traction

Growing cattle or 
buffaloes

Preweaned calves
Replacement heifers

Growing cattle or buffaloes/post-weaning calves
Confinement cattle fed diets >90 % concentrates

Source: IPCC (2006, 2019).

The non-existence of national herd inventories available for 
consultation prevents having official figures for their use in the 
calculations pursued in this document; however, it was necessary 
to use indirect sources, such as FAO’s FAOSTAT database (2023), 
which has an inventory of the Venezuelan herd until the year 2021 
of 16,221,020 cattle. On the other hand, the Venezuelan Minister of 
People’s Power for Productive Agriculture and Lands, in October 
of this year, referred on the social network Twitter that Venezuela 
has 17,292,202 animals to date, of which 11,931,619 females and 
5,360,583 males, while the state of Zulia has 18.60 % of the herd 
and is the largest producer (Castro, 2023). The proportions referred 
by Castro (2023), the only official source of this information, allow 
calculating a herd of 3,216,350 animals for the state of Zulia. From 
the ULA-CIAAL (2011) document, a proportion of cows of 35 % 
can be extracted, which results in 1,125,723 cows and the rest of the 
age categories in 2,090,627 animals, estimated inventories that were 
used for the calculation of CH4 of enteric origin incorporated into the 
environment.

Discussion

Ruminant feeding
Ruminants have become one of the most important species from 

the agri-food point of view, due to the production of milk and meat 
that serve as a source of protein for the human diet, as well as other 
benefits, such as work and companionship. These animals feed on 
plant species, predominantly grasses, which in turn serve as substrate 
for the microorganisms that cohabit the rumen, predominantly 
bacteria, fungi, protozoa and bacteriophages (Dearing et al., 2017; 
Wang et al., 2017; Xia et al., 2020).

In the Venezuelan DPPS, crossbred Bos taurus × Bos indicus 
animals are fed grazing as a basic diet (Urdaneta, 2009). Peña et 
al. (1997) and Pariacote et al. (2012) report that in the Rosario and 
Machiques de Perijá municipalities of Zulia state, this livestock 
production system predominates, using Brahman, Holstein and Brown 
Swiss breeds with different levels of crossbreeding and grazing on 
grasses with high proportion of cell wall contents (Adesogan et al., 
2019).

information is generated under genetic, productive, climatic and 
dietary conditions very different from Venezuelan conditions.

Literature was used preferably with a feeding management 
based on grazing or by the inclusion of vegetable sources for animal 
feeding, however, for the purpose of contrasting different dietary 
schemes, articles that used some type of strategic supplementation 
through concentrated feeds or raw materials were also considered. It is 
important to point out that predominantly, research on this subject has 
been carried out in countries with strengths in these measurements. 
Thus, to document basic principles, classical literature (Church, 
1988; Johnson and Johnson, 1995, Kurihara et al., 1999), necessary to 
record the physiological basis of ruminant GIT, as well as the role of 
the ruminal microbiota in the production of GHG (Hoover and Miller, 
1991), was found. Similarly, opinions of environmental organizations 
such as Greenpeace (2009, 2018) and journalists such as Lombardero 
(2007) are documented, necessary to discuss the stigmatization and 
defense of ruminants as GHG generators.

Regional Estimates of Enteric Methane Production
The Intergovernmental Panel on Climate Change (IPCC) 

generates scientific information on the current state of climate change 
and potential impacts on the environment and economy (IPCC, 2006, 
2019; Smith et al., 2014). In the 1996 IPCC Guidelines and Good 
Practice Guidance (IPCC, 1996), the simplest and most common 
methodological approach to combine information on the extent 
to which human activity takes place (called activity data or DA) is 
performed with coefficients that quantify emissions or removals per 
unit of activity. These are called Emission Factors (EF). The basic 
equation is therefore: Emissions = DA × EF.

IPCC methodologies use the concepts of good practices alluding 
to the care of overestimates and uncertainties; “Tiers” referring to 
levels of complexity, from the use of values reported in literature 
to the use of models based on feed quality and productive states 
of the herd; key categories to refer to the constituent age groups of 
the regional herds; among other key concepts for the definition of 
particular regional conditions. In a recently revised version, the IPCC 
manual (2019) points out the use of Tier 2 or 3 methodologies, for 
which it is necessary to have gross energy consumption (GEC) figures 
and methane conversion factors for specific categories of livestock 
or models based on the consumption of specific nutrients; however, 
since there is no research of this type in Venezuela, this methodology 
cannot be used.

On the other hand, in the methodology described in IPCC (2006), 
it specifies that the main livestock categories and subcategories can 
be classified according to the guidelines in Table 1, which are adapted 
to the livestock categories used in dual purpose production systems 
(DPPS) in the Maracaibo Lake basin.

For the purposes of this review, the Tier 1 methodology was used, 
which consists of  EF derived from the literature, which is multiplied 
by the number of animals present in a country. These factors have also 
been suggested by IPCC (2006) according to the type of animal and 
geographical location, factors similar to those presented by Ungerfeld 
et al. (2018), which correspond to 72 kg.head-1.year-1 for dairy cows 
and 56 kg.head-1.year-1 for other types of animals (beef cattle, bulls, 
calves, heifers). However, IPCC (2019) made changes for these FE, 
for which it introduces the classification of high (3,400 kg milk.
head-1.year-1) and low production (1,250 kg milk.head-1.year-1) dairy 
production systems, the latter classification in which Venezuelan 
production systems fall. In this sense, IPCC (2019) specifies 78 
kg.head-1.year-1 for dairy cows and 58 kg.head-1.year-1 for other types 
of animals (beef cattle, bulls, calves, heifers).
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These grasses are fermented by rumen microorganisms producing 
volatile fatty acids (VFA) that feed the energy metabolism of these 
animals, taking advantage of their capacity to degrade cellulose 
(Church, 1988; Reyes Gutiérrez, 2012). Grazing of tropical grasses, 
incorporating structural carbohydrates in different proportions, 
produces more methane and promotes a higher acetic acid:propionic 
acid ratio than fermentation of non-structural carbohydrates (Hyland 
et al., 2016; Valencia-Salazar et al., 2022). In these diets, energy losses 
to form methane are 8 to 12 % of the gross energy (GE) consumed 
by the animal, but in the case of diets where commercial concentrates 
(more than 90 % grain and high energy) are incorporated, methane 
losses can be as low as 2 to 3 % of GE intake (Johnson and Johnson, 
1995; Methol, 2005; Hyland et al., 2016).

Cattle production systems are the main producers of methane 
among domestic ruminants, generating 7-9 times more methane 
than sheep and goats. In cattle and other ruminants, approximately 
80 % of methane is generated in the rumen, a product of cellulose 
digestion by rumen microorganisms, while about 20 % comes 
from the decomposition of fecal matter (Román and Hernández-
Medrano, 2016). At the rumen level, the conversion of CO2 to CH4 
in microbial fermentative processes confers to the carbon product of 
this conversion a Global Reheating Power (GRP) 21 times greater 
than CO2 (de Blas et al., 2008). As a result of these processes, 
carbohydrates and proteins are cleaved to their simplest chemical 
elements, such as monosaccharides and amino acids, which are 
assimilated by microorganisms by specific metabolic pathways and 
result in volatile fatty acids (VFA), CO2, CH4 and heat (McDonald et 
al., 1979; Vargas et al., 2012).

When analyzing the phenomenon physiologically, the production 
of enteric methane in ruminants is carried out by pathways that 
require important energetic inputs, which are provided by the diet. 
There are several dietary factors that affect the digestion process 
of raw materials in the ruminant GIT, among them the relationship 
between the consumption of pasture, forage and concentrate feeds. 
Animals with high contents of concentrates are subject to a decrease 
in the pH of the rumen content due to a high digestibility of this 
product and a decrease in the buffering power of this medium due to 
a dilution effect of the forage content. This decreases the populations 
of cellulolytic flora to the benefit of amylolytic flora, which decreases 
fiber digestion, leading to a decrease in acetic acid production and 
an increase in propionic acid, which in turn leads to a decrease in 
pH by release of protons (H2) increasing enteric methane production 
(Oldham et al., 1977; Johnson and Johnson, 1995; de Blas et al., 
2008; Vargas et al., 2012).

Dietary factors and enteric methane emission in ruminants
The incorporation of highly digestible diets improves the use of 

the energy contained in their carbohydrates, which translates into a 
decrease in methane emissions. There are pasture species that are 
more efficient in milk production, partly because of their low enteric 
methane production due to a greater efficiency in protein and energy 
metabolism. Likewise, as the age of the plant increases, methane 
production increases due to the effect of the increase in lignocellulosic 
fractions (Carmona et al., 2005).

The non-utilization of energy due to methane gas production 
is due to many factors: amount and type of feed, manipulation of 
ruminal fermentation, addition of lipids, type of carbohydrate in the 
diet and processing of forages (Carmona et al., 2005). These factors, if 
controlled or manipulated, could become efficient alternatives for the 
control of this type of emissions. Chandramoni et al. (2000) evaluated 

different proportions of forage and concentrate feed incorporation 
(F:C; 92:8, 50:50 and 30:70) in confinement sheep, recording the 
production of methane of enteric origin in relation to gross energy 
and found that in the diet with a high proportion of forages (92:8), 
methane production was higher (3.93 %) than in 50:50 and 30:70 
(3.34 % and 2.98 %, respectively). The findings of these researchers 
led to the conclusion that less methane is produced in starch-rich diets 
than in high-fiber diets.

The inclusion of supplements high in easily digestible 
carbohydrates promotes changes in the ruminal microflora towards an 
increase in amylolytic populations, which translates into a decrease 
in the digestion of fibrous fractions, leading to a lower proportion of 
acetate and a higher proportion of propionate (Oldham et al., 1977). 
This metabolic scenario drives the rumen environment towards a 
lower methane emission as described by Van Kessell and Russell 
(1996).

In the Venezuelan DPPS, the use of commercial concentrate feeds, 
alternative raw materials (produced or not within the production unit) 
or agro-industrial by-products, traditionally constituted the elements 
used as feed materials to make up for the deficiencies inherent to the 
medium to low quality of pastures and forages used as basic diet in 
ruminants.

In a review by Ungerfeld et al. (2018), the processes by which, 
carbohydrates during glycolysis and oxidative decarboxylation 
of pyruvate to acetyl-CoA, reduce cofactors that are reoxidized to 
continue ruminal fermentation are summarized; these cofactors 
transfer electrons to protons forming H2, which is transferred from 
the fermenting organisms to methanogenic Archaea, which use it to 
reduce CO2 to CH4 (Carmona et al., 2005).

Methane, the main electron sink in the rumen, during propionate 
formation also incorporates metabolic hydrogen from reduced 
cofactors. Thus the production of acetate, and to a lesser extent 
butyrate, from hexoses results in the release of reducing equivalents 
that will be mostly available for methanogenesis, while propionate 
production incorporates reducing equivalents competing with CH4 
formation (Bonilla-Sandí et al., 2020).

While it is true that there is a direct relationship between the level 
of dry matter intake and CH4 production (Hristov et al., 2013), it is 
also true that the nutritional composition of the diet plays an important 
role in CH4 production. The presence of insoluble cell wall fiber in the 
diet favors a higher acetate:propionate ratio and, consequently, higher 
CH4 production. In contrast, fermentation of soluble carbohydrates 
results in lower CH4 production (Rivas-Martínez et al., 2023).

Estimation of methane production in ruminants
Advances in the understanding of ruminal fermentation have 

allowed the development of mathematical models for the prediction 
of enteric methane emission in ruminants. Hristov et al. (2013) and 
Ungerfeld et al. (2018) have generated prediction equations with 
different levels of complexity, estimating such emissions by relating 
different productive stages, chemical composition of the diet, animal 
products such as milk fat, or with animal behavior such as feed intake 
or with live weight.

Johnson and Johnson (1995) in a detailed review of different 
aspects related to CH4 emissions in ruminants, state that when daily 
feed intake (DFA) increases, the percentage of dietary GE lost as CH4 
(Ym) decreases on average 1.6 % per level of intake, however, the 
linear mathematical model to predict this decrease fails and therefore 
limits its extrapolation from laboratory to field. When highly available 
carbohydrates are fed at limited intakes, high fractional CH4 losses 
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occur, while at high intakes of highly digestible diets, low fractional 
CH4 losses occur.

Yan et al. (2000) after a meta-analysis similar to the previous one 
developed CH4 prediction models based on digestible energy intake 
(DEC) including silage acid detergent fiber (ADF) (or DMI ratios) 
and feed intake level. However, in the review by Hristov et al. (2013) 
it is concluded that the validity of Ym is questionable, since according 
to Ellis et al. (2010), this parameter does not have the ability to 
differentiate between a change in CH4 produced due to an increase in 
DMI and a change in CH4 due to increases in dietary fat content, to 
which they propose to express energy losses in CH4 based on GE (or 
per unit of animal product), which will more adequately reflect forage 
quality and other mitigation practices, such as the inclusion of grains 
or fats in diets.

For growing, grazing-fed lambs, Hegarty et al. (2010) proposed 
the following relationships between feed intake, digestibility (55 to 
85 %) and CH4 production:

• The increase in DMI is associated with a linear increase 
in average daily weight gain (ADG), with the rate of ADG 
higher in feeds of higher digestibility.

• The increase in DMI is associated with an increase in CH4 
production. In diets with low to moderate digestibility, such 
as those in Australian extensive grazing systems, CH4 release 
per unit of additional intake is greater than when there is a 
high intake of highly digestible feeds.

• CH4 production per unit of metabolizable energy (ME) intake 
is lower in diets with high energy densities.

• Although an increase in the intake of any diet reduces the 
intensity of emissions in the growth phase (g CH4.kg-1 LWG), 
the intensity of emissions at any DMI level is lower in highly 
digestible feeds than in low digestible feeds.

• Small changes in energy intake result in small changes in CH4 
production, but large changes in the productive performance 
of the animal.

In the meta-analysis of Hristov et al. (2013) a total of 377 
observations were analyzed, which allowed to ensure with an R2 = 
0.86 that DMI (specifically digestible OM) is the most important 
promoter of CH4 production in ruminants, so that the dietary effect 
and forage quality on intake is of utmost importance. The authors 
clarify that, when using such an equation, the prediction error could 
be higher with increases in DMI, since changing DMI to a narrower 
range (ie. 10 % increase from approximately 18 to 20 kg.day-1) would 
result in higher variability, making further research necessary to 
nurture these predictions.

Dry matter intake and DE are the most important determinants 
of milk and meat production, but the meta-analysis by Hristov et 
al. (2013) did not include increased production or decreased enteric 
CH4 relative to production when increasing DMI. CH4 increases with 
increasing DMI, but if this phenomenon is viewed from a lens of 
increased milk and meat production, CH4 decrease would only be 
achieved with increased feed efficiency and genetically determined 
productive potential in herds that would tend to be lower in high-tech 
production systems.

Enteric methane contributions
Industrial processes and the burning of fossil fuels make a 

significant contribution of GHGs, which have been estimated 
and discussed in the workshops of the IPCC, a body established 
by the United Nations Environment Program (UNEP) and the 
World Meteorological Organization (WMO) to generate scientific 

information on the current state of climate change and possible 
impacts on the environment and the economy (Smith et al., 2014).

According to the results of those workshops, agriculture contributes 
about 14 % of GHGs, while, of these, methane occupies 18 %, and 
animal agricultural production systems about 20 %, mostly due to 
enteric fermentation (Smith et al., 2014). On the other hand, some 
environmental conservationist organizations have pointed to cattle 
as the main species responsible for this phenomenon. Greenpeace 
(2009) in Brazil, points to the cattle-producing meat activity, not only 
for the deforestation of 19,368 km2 per year of the Brazilian Amazon 
rainforest, but, consequently, for the increase of GHGs resulting from 
this activity. The subsidiary of this same global organization in Spain, 
ensures that, in this country, the livestock sector emitted in 2015 more 
than 86 million tons of CO2-eq originated in the production of fodder 
and grains for animal feed, followed by methane emissions produced 
in the digestion of ruminants (Greenpeace, 2018).

In Venezuela, the extinct Ministry of Environment and Renewable 
Natural Resources (MARNR), in inter-institutional workshops, 
yielded figures of 2,950 Gg total CH4, while enteric fermentation 
registers 757.2 Gg, i.e. 25.7 % of the total produced in the country. 
For Zulia state, the national herd data referred to by Castro (2023) 
and the EFs specified by IPCC (2006; 2019) and Ungerfeld et al. 
(2018), allow calculating an estimated 209 Gg of CH4 contributed by 
this herd, which represents 7.1 % of the total CH4 inventoried at the 
national level and 27.6 % of the CH4 of enteric origin reported in the 
MARNR report (2005). Although these calculations place Venezuela 
in very conservative conditions with respect to GHG emissions to the 
atmosphere, it is also true that they should be taken with caution, since 
the data were not produced under the conditions of the productive 
systems, nor under Venezuelan agro-climatic conditions.

Conclusions

The feeding of grazing ruminants, based on the consumption of 
high proportions of vegetable cell walls, generates a greater proportion 
of methane of enteric origin in animal production systems.

The incorporation of supplements that improve the digestibility 
of basic forage diets helps to reduce the generation of methane 
of enteric origin in grazing ruminants, which also leads to a more 
efficient productive performance, being able to achieve a shorter 
stay of animals within the system, which translates into a lower 
contribution of methane to the group of GHG that are incorporated 
into the environment.

According to calculations made on the basis of data generated 
by governmental institutions, the contribution of methane of enteric 
origin was about 209 Gg, that is, 7.1 % of the total inventoried in 
Venezuela, estimates that should be considered with caution, given 
the foreign origin of the partial data used.

At present, Venezuela does not have scientific work teams with 
the technological capabilities or research projects that contemplate 
the permanent monitoring of GHG emissions produced in ruminant 
production systems. However, there are laboratories in different 
university or research institutions in the state, which have a 
minimum installed capacity and the human talent to implement such 
measurement systems.
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