This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Pérez et al. Rev. Fac. Agron. (LUZ). 2023, 40 (Supplement): e2340Spl04
5-6 |
several classes of secondary metabolites including terpenes, complex 
phenols, and alkaloids during in vitro and in vivo growth through the 
induction of ionic or osmotic stress.
Conclusion
Guava is a plant rich in secondary metabolites, particularly 
phenolic compounds, such as phenols and avonoids, with biological 
anti-inammatory, antimicrobial and antioxidant properties. Scientic 
papers on the phenology of P. guajava were found less frequently 
than expected. However, it is a characteristic that deserves attention 
because it allows the development of agronomic management 
techniques to support crop production. Scientic studies have shown 
that P. guajava is a highly productive species of secondary metabolites 
under stress conditions. The production of secondary metabolites of 
the plant could be a useful indicator for the characterization of its 
production of agroindustrial and pharmaceutical importance and, 
therefore, would constitute a useful tool in the selection process.
Literatura citada
Appiah,  K.  S.,  Omari,  R.  A.,  Onwona-Agyeman,  S.,  Amoatey,  C.  A.,  Ofosu-
Anim, J., Smaoui, A., Arfa, A. B., Suzuki, Y., Oikawa, Y., Okazaki, S., 
Katsura, K., Isoda, H., Kawada, K., & Fujii, Y. (2022). Seasonal changes 
in  the  plant  growth-inhibitory  eects  of  rosemary  leaves  on  lettuce 
seedlings. Plants, 11(5), 673. Doi: 10.3390/plants11050673
Arbona, V., Manzi, M., de Ollas, C., & Gómez-Cadenas, A. (2013). Metabolomics 
as a tool to investigate abiotic stress tolerance in plants. International 
Journal of Molecular Sciences, 14(3), 4885-4911. Doi: 10.3390/
ijms14034885 
Azad, M. O. K., Kjaer, K. H., Adnan, M., Naznin, M. T., Lim, J. D., Sung, I. J., 
Park, C. H., & Lim, Y. S. (2020). The evaluation of growth performance, 
photosynthetic capacity, and primary and secondary metabolite content 
of leaf lettuce grown under limited irradiation of blue and red led 
light in an urban plant factory. Agriculture,  10(2), 28. Doi: 10.3390/
agriculture10020028
Baskar, V., Venkatesh,  R.,  &  Ramalingam, S.  (2018).  Flavonoids  (Antioxidants 
Systems) in higher plants and their response to stresses. In: D. Gupta, J. 
Palma, F. Corpas (Eds.), Antioxidants and Antioxidant Enzymes in Higher 
Plants  (pp.  253-268).  Springer, Cham. Doi: 10.1007/978-3-319-75088-
0_12
Biondi,  D.,  Leal,  L.,  &  Batista,  A.  C.  (2007).  Fenologia  do  orescimento 
e  fruticação  de  espécies  nativas  dos  Campos.  Acta Scientiarum. 
Biological Sciences,  29(3),  269-276.  https://www.redalyc.org/articulo.
oa?id=187115762005
Böttger,  A.,  Vothknecht,  U.,  Bolle,  C.,  &  Wolf,  A.  (2018).  Plant  secondary 
metabolites and their general function in plants. In: Lessons on Caeine, 
Cannabis & Co: Plant-derived drugs and their interaction with human 
receptors. Learning Materials in Biosciences (pp. 3-17). Springer, Cham. 
Doi: 10.1007/978-3-319-99546-5_1
Camarena-Tello, J., Martínez-Flores, H., Garnica-Romo, M., Padilla-Ramírez, J., 
Saavedra-Molina,  A.,  Alvarez-Cortes,  O.,  Bartolomé-Camacho,  M.,  & 
Rodiles-López, J. (2018). Quantication of  phenolic compounds and in 
vitro radical scavenging abilities with leaf extracts from two varieties of 
Psidium guajava L. Antioxidants, 7(3), 34. Doi: 10.3390/antiox7030034
Cheynier,  V.,  Comte,  G.,  Davies,  K.  M.,  Lattanzio,  V.,  &  Martens,  S.  (2013). 
Plant phenolics: recent advances on their biosynthesis, genetics, and 
ecophysiology.  Plant Physiology and Biochemistry,  72, 1-20. Doi: 
10.1016/j.plaphy.2013.05.009
Chiveu, J.,  Naumann,  M.,  Kehlenbeck, K.,  &  Pawelzik,  E. (2019). Variation  in 
fruit  chemical  and  mineral  composition  of  Kenyan  guava  (Psidium 
guajava L.): Inferences from climatic conditions, and fruit morphological 
traits. Journal of Applied Botany and Food Quality, 92, 151-159. Doi: 
10.5073/JABFQ.2019.092.021
Coutinho, A. (2013). Extração de tanino em folhas, sementes e frutos 
verdes de cinamomo (Melia azedarach L.) com diferentes tipos de 
solventes (Bachelor’s thesis, Universidade Tecnológica Federal do 
Paraná). http://repositorio.utfpr.edu.br/jspui/handle/1/6501
da  Fontoura  Custódio  Monteiro,  V.,  Dias  Gonçalves,  E.,  Abreu  Moura,  P.  H., 
Vieira da Silva, L., Bolzan Martins, F., & Norberto, P. M. (2021). Estágios 
fenológicos da goiabeira ‘Paluma’ em região de clima subtropical de acordo 
com a escala BBCH. Revista Brasileira De Ciências Agrárias, 16(3), 1-8. 
Doi: 10.5039/agraria.v16i3a177
Esparza, D., Tong, F., Parra, G., Sosa, L., & Petit, D. (1993). Caracterización de la 
producción de guayaba, Psidium guajava L., en una granja del Municipio 
Mara del Estado Zulia. Revista de la Facultad de Agronomía de la 
Universidad del Zulia, 10(Suplemento 1), 53-54. 
Espinosa-Leal, C. A., Mora-Vásquez, S., Puente-Garza, C. A., Alvarez-Sosa, D. 
S., & García-Lara, S. (2022). Recent advances on the use of abiotic stress 
(water, UV radiation, atmospheric gases, and temperature stress) for the 
enhanced production of secondary metabolites on in vitro plant tissue 
culture. Plant Growth Regulation, 97(1), 1-20. Doi: 10.1007/s10725-022-
00810-3
Ferreira, M. D. C., Martins, F. B., Florêncio, G. W., & Pasin, L. A. (2019). Cardinal 
temperatures and modeling of vegetative development in guava. Revista 
Brasileira de Engenharia Agrícola e Ambiental,  23(11), 819-825. Doi: 
10.1590/1807-1929/agriambi.v23n11p819-825
Fisher, G., & Orduz-Rodríguez, O. (2012). Ecosiología en frutales. En: G. Fisher, 
L.M. Melgarejo, D. Miranda (Eds.). Manual para el cultivo de frutales en 
el trópico. (pp. 54-72). Produmedios.
Fotirić,  M.  F.,  Tosti,  T.,  Sredojević,  M.,  Milivojević,  J.,  Meland,  M.,  &  Natić, 
M.  (2019).  Comparison  of  sugar  prole  between  leaves  and  fruits  of 
blueberry and strawberry cultivars grown in organic and integrated 
production system. Plants, 8(7), 205. Doi: 10.3390/plants8070205
Gómez, R. (1995). Manejo agronómico del cultivo del guayabo en Colombia (No. 
Doc. 24646) CO-BAC, Bogotá.
Huyskens-Keil, S., Eichholz-Düdar, L., Hassenberg, K., & Herppich, W.B. (2020). 
Impact of light quality (White, red, blue light and UV-C irradiation) on 
changes in antocyanin content and dynamics of PAL and POD activities 
in apical and basal spear sections of White asparagus after harvest. 
Postharvest Biology and Thechnology, 161,  111069.  Doi:  10.1016/j.
postharvbio.2019.111069
Isah, T. (2019). Stress and defense responses in plant secondary metabolites 
production.  Biological Research, 52(39),  1-25.  Doi:  10.1186/s40659-
019-0246-3
Jan,  R., Asaf,  S.,  Numan,  M.,  Lubna,  &  Kim,  K.  M.  (2021).  Plant  secondary 
metabolite biosynthesis and transcriptional regulation in response to 
biotic and abiotic stress conditions. Agronomy, 11(5), 968. Doi: 10.3390/
agronomy11050968
Jassal,  K.,  &  Kaushal,  S.  (2019).  Phytochemical  and  antioxidant  screening 
of guava (Psidium guajava) leaf essential oil. Agricultural Research 
Journal, 56(3), 528-533. Doi: 10.5958/2395-146X.2019.00082.6
Kaplan,  I.,  Halitschke,  R.,  Kessler,  A.,  Sardanelli,  S.,  &  Denno,  R.  F.  (2008). 
Constitutive and induced defenses to herbivory in above‐and belowground 
plant tissues. Ecology, 89(2), 392-406. Doi: 10.1890/07-0471.1
Lattanzio, V. (2013). Phenolic Compounds: Introduction. In:  K.  Ramawat,  J. 
Mérillon (Eds.), Natural Products (pp. 1543-1580). Springer. Doi: 
10.1007/978-3-642-22144-6_57
Li,  X.,  Li,  B.,  Min,  D.,  Ji,  N.,  Zhang,  X.,  Li,  F.,  &  Zheng,  Y.  (2021). 
Transcriptomic analysis reveals key genes associated with the 
biosynthesis regulation of phenolics in fresh-cut pitaya fruit (Hylocereus 
undatus).  Postharvest Biology and Technology,  181,  111684.  Doi: 
10.1016/j.postharvbio.2021.111684
Li, Y.,  Xu,  J.,  Li,  D.,  Ma,  H.,  Mu,  Y.,  Zheng,  D.,  Huang,  X.,  &  Li,  L.  (2021). 
Chemical characterization and hepatoprotective eects of a standardized 
triterpenoid-enriched guava leaf extract. Journal of Agricultural and 
Food Chemistry, 69(12), 3626-3637. Doi: 10.1021/acs.jafc.0c07125
Liu, X., Yan, X., Bi, J., Liu, J., Zhou, M., Wu, X., & Chen, Q. (2018). Determination 
of phenolic compounds and antioxidant activities from peel, esh, seed of 
guava (Psidium guajava L.).  Electrophoresis, 39(13),  1654-1662.  Doi: 
10.1002/elps.201700479
Lustre, H.  (2022).  Los  superpoderes de las plantas: los metabolitos  secundarios 
en su adaptación y defensa. Revista Digital Universitaria, 23(2). Doi: 
10.22201/cuaieed.16076079e.2022.23.2.10
Mamani de Marchese, A., & Filippone, M. P. (2018). Bioinsumos: componentes 
claves de una agricultura sostenible. Revista agronómica del noroeste 
argentino,  38(1), 9-21. https://ranar.faz.unt.edu.ar/index.php/ranar/
article/view/36/29
Marín, M.,  Casassa, A.,  Pérez,  E.,  González, C.,  Chirinos,  D., González,  C.,  & 
Sandoval, L. (2004). Enmiendas orgánicas para la recuperación de 
árboles de guayabo (Psidium guajava L.) infestados con Meloidogyne 
incognita. I. Variación de características fenológicas. Revista de la 
Facultad de Agronomía de la Universidad del Zulia, 21(Supl. 1), 129-
136.  https://www.produccioncienticaluz.org/index.php/agronomia/
article/view/26529
Marín, M., Casassa, A., Rincón, A., Labarca, J., Hernández, Y., Gómez, E., Viloria, 
Z., Bracho, B., & Martínez, J. (2000). Comportamiento de tipos de guayabo 
(Psidium guajava L.) injertados sobre Psidium friedrichsthalianum Berg-
Niedenzu. Revista de la Facultad de Agronomía de la Universidad del 
Zulia, 17(5), 384-392. https://www.produccioncienticaluz.org/index.
php/agronomia/article/view/26369
Mendes, L. A., Martins, G. F., Valbon, W. R., de Souza, T. D. S., Menini, L., 
Ferreira, A., & da Silva Ferreira, M. F. (2017). Larvicidal eect of essential 
oils from Brazilian cultivars of guava on Aedes aegypti L. Industrial 
Crops and Products, 108, 684-689. Doi: 10.1016/j.indcrop.2017.07.034
Mendoza,  I.,  Peres,  C.,  &  Morellato,  L.  (2017).  Continental-scale  patterns  and 
climatic drivers of fruiting phenology: A quantitative neotropical 
review.  Global and Planetary Change, 148,  227-241.  Doi:  10.1016/j.
gloplacha.2016.12.001