
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Estrada et al. Rev. Fac. Agron. (LUZ). 2023 40(4): e234036
6-7 |
the dry season ranges from 0.10 to 0.70 and it can be elucidated that 
the NDVI range found for the grasslands of the Kayra Agronomic 
Center is lower, despite being located in a humid zone. These results 
are also lower than those found by Paredes (2019) for the grasslands 
of the central grasslands of Peru, with the assistance of the Modis 
Terra sensor (table 3).
Table  3.  Plant  Community  area  and  NDVI.
Plant community Area (ha) NDVI
Hillside grassland 840.00 0.02 – 0.20
Shrub grassland 325.00 0.20 – 0.30
Grassland forest 621.00 0.30 – 0.40
Agricultural crops 39.80 0.40 – 0.44
NDVI: Normalized dierence vegetation index
Animal carrying capacity per community, plant ecosystem, 
and study area
Condition and animal carrying capacity were estimated from 
grazing areas used at the time of assessment. Each of the three 
grazing zones was composed of the ecosystems of hillside grassland, 
natural forest and plantations in massifs, agricultural ecosystem, and 
constructed landscape.
The study determined that the condition of the pasture (table 4) in 
the Kayra Agronomic Center, considering cattle, sheep, and alpacas, 
is regular, showing that the Perolpuquio area has poor grasslands and 
the Fierroccata and Chequicocha areas have regular condition. The 
poor condition of the Perolpuquio area was mainly due to the res 
that occurred in 2020 and 2021.
Table 4. Condition and animal carrying capacity per study area.
Study area
Pasture Condition
Animal Carrying 
Capacity
Cattle Sheep Alpaca
Cattle  
(UV.year
-1
)
Sheep   
(UO.year
-1
)
Alpaca
(AU.year
-1
)
Perolpuquio Poor Poor Poor 0.13 0.5 0.33
Fierroccta Regular Regular Regular 0.38 1 1.5
Chequilccocha Regular Regular Regular 0.38 1 1.5
KAC Regular Regular Regular 0.30 0.83 1.11
KAC: Kayra Agronomic Center
The  condition  of  the  pasture  in  the  Kayra  Agronomic  Center 
for the study period was 0.30 UV.year
-1
, 0.83 UO.year
-1
 and 1.11 
UA.year
-1
, while for the Perolpuquio area, the carrying capacity for 
cattle was 0.13
 
UV.year
-1
; 0.50 UO.year
-1 
and 0.33
 
UA.year
-1.
 In the 
areas of Fierroccata and Chequiccocha it was 0.38 UV.year
-1, 
1.11 
UO.year
-1,
 and 0.33 UA.year
-1
 for cattle.
It was determined that the grasslands of the Kayra Agronomic 
Center have a carrying capacity with a tendency from regular to low 
or poor (table 4). Considering the ecosystem and climate map, it can 
be noted that these grasslands are below the parameters established 
by  MINAM  (2016)  and  show  the  eects  of  disturbances  such  as 
grassland  burning,  res,  and  overgrazing  (Chavez  et al., 2017; 
Pizarro, 2017; Zorogasúa et al., 2012).
Conclusions
The use of satellite images and high-resolution orthophotographs 
from the Kayra Agronomic Center, taken with unmanned aerial 
vehicles, made it possible to qualify ecosystems and develop land 
cover maps with high precision.
The study has identied four microecosystems that can be used as 
a basis for soil management at the Kayra Agronomic Center.
Acknowledgment
Our special thanks to the Laboratory of Animal Science and 
Climate Change, remote sensing area, and unmanned aerial vehicles of 
the Professional School of Zootechnics of the Faculty of Agricultural 
Sciences of the National University of Saint Anthony the Abbot in 
Cusco.
Literature cited
Chavez Castillo, E., Paz Pellat, F., & Bolaños González, M. A. (2017). Estimación 
de biomasa y cobertura aérea usando radiometría e imágenes digitales a 
nivel de campo en pastizales y matorrales. Revista Terra Latinoamericana, 
35(3), 247. https://doi.org/10.28940/terra.v35i3.133
Chen, J., Jönsson, P., Tamura, M., Gu, Z., Matsushita, B., & Eklundh, L. (2004). 
A simple method for reconstructing a high-quality NDVI time-series data 
set based on the Savitzky-Golay lter. Remote Sensing of Environment, 
91(3–4), 332–344. https://doi.org/10.1016/j.rse.2004.03.014
Comer, P.J., Young, B., Schulz, K., Kittel, G., Unnasch, B., Braun, D., Hammerson, 
G., Smart, L., Hamilton, H., Auer, S., Smyth, R., & Hak, J. (2012). 
Climate Change Vulnerability and Adaptation Strategies for Natural 
Communities: Piloting methods in the Mojave and Sonoran deserts. 
Report to the US Fish. Report to the U.S. Fish and Wildlife Service. 
NatureServe, Arlington, VA,  September.https://transfer.natureserve.org/
download/Longterm/Ecology/HCCVI/DesertLCCpilot/NatureServe_
HCCVI_Report.pdf
D’Oleire-Oltmanns, S., Marzol, I., Peter, K. D., & Ries, J. B. (2012). Unmanned 
aerial vehicle (UAV) for monitoring soil erosion in Morocco. Remote 
Sensing, 4(11), 3390–3416. https://doi.org/10.3390/rs4113390
Estrada Zúñiga, A. C., Cárdenas, J., Bejar, J.V., & Ñaupari, J. (2022). Biomass 
estimation of a high Andean plant community with multispectral 
images acquired using UAV remote sensing and Multiple Linear 
Regression, Support Vector Machine and Random forest models. 
Scientia Agropecuaria,  13(3), 301–310. https://doi.org/10.17268/sci.
agropecu.2022.027
Estrada Zúñiga, A. C., & Ñaupari Vásquez, J. (2021). Detección e identicación 
de  comunidades  vegetales  altoandinas,  Bofedal  y  Tolar  de  Puna  Seca 
mediante ortofotografías RGB y NDVI en drones “Sistemas Aéreos 
no  Tripulados.”  Scientia Agropecuaria,  12(3), 291–301. http://dx.doi.
org/10.17268/sci.agropecu.2021.032.
Fuhlendorf, S. D., Archer, S. A., Smeins, F., Engle, D. M., & Taylor, C. A. (2012). 
The Combined Inuence of Grazing, Fire, and Herbaceous Productivity 
on Tree–Grass Interactions. 219–238. https://doi.org/10.1007/978-0-387-
34003-6_12
Holdrigde, L. (1978). Ecología basada en zonas de vida. IICA.
Lussem, U., Bolten, A., Menne, J., Gnyp, M. L., Schellberg, J., & Bareth, G. 
(2019). Estimating biomass in temperate grassland with high resolution 
canopy surface models from UAV-based RGB images and vegetation 
indices.  Journal of Applied Remote Sensing,  13(03), 1. https://doi.
org/10.1117/1.jrs.13.034525
Melville,  B.,  Lucieer, A.,  & Aryal,  J.  (2019).  Classication  of  lowland  native 
grassland communities using hyperspectral unmanned aircraft system 
(Uas) imagery in the tasmanian midlands. Drones, 3(1), 1–12. https://doi.
org/10.3390/drones3010005
Meneses, V. A. B., Téllez, J. M., & Velasquez, D. F. A. (2015). Uso De Drones 
Para El Analisis De Imágenes Multiespectrales En Agricultura De 
Precisión. @limentech, Ciencia y Tecnología Alimentaria, 13(1). https://
doi.org/10.24054/16927125.v1.n1.2015.1647
Ministerio del Ambiente MINAM. (2016). Guía complementaria para la 
compensación ambiental: Ecosistemas Altoandinos. Resolución 
Ministerial N° 183-2016-MINAM, 27446, 5–41. https://www.minam.gob.
pe/wp-content/uploads/2016/07/RM-N%C2%B0-183-2016-MINAM1.
pdf
Muñoz Gómez, F. A., Galicia Sarmiento, L., & Pérez, E. H. (2018). Agricultura 
migratoria conductor del cambio de uso del suelo de ecosistemas 
alto-andinos de colombia. Biotecnoloía En El Sector Agropecuario y 
Agroindustrial, 16(1), 15. https://doi.org/10.18684/bsaa(16)15-25