This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Vilchez-Perozo et al. Rev. Fac. Agron. (LUZ). 2023 40(4): e234032
5-6 |
George, E.F., Hall, M.A., & Klerk, G.J.D. (2008). Somatic Embryogenesis. In: 
George, E.F., Hall, M.A. & Klerk, G.J.D. (eds). Plant Propagation by 
Tissue Culture. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-
5005-3_9
Gómez R. (1998). Embriogénesis Somática. En: Propagación y mejora genética 
de plantas por biotecnología. pp13-22. Pérez J. (eds). Primera edición. 
Instituto de Biotecnología de las Plantas. Universidad Central de las 
Villas. Santa Clara. Cuba. 
Gómez, R., Vilchez-Perozo, J., Albany, N., & Agramonte, D. (2005). Somatic 
embryo germination of Psidium guajava L. in the Rita® temporary 
immersion system and on semisolid medium. In: Hvoslef-Eide, A.K., 
Preil, W. (eds). Liquid Culture Systems for in vitro Plant Propagation. 
Springer, Dordrecht. https://doi.org/10.1007/1-4020-3200-5_14
González, Jiménez, M. C., & Olivet, E. (2023). Respuesta agronómica del cultivo 
de la guayaba (Psidium guajava. L) a la aplicación del Quitomax®. 
Revista  Cientíca  Agroecosistemas,  11(1), 163-171. https://aes.ucf.edu.
cu/index.php/aes/article/view/612
Gray, D.J. (1987). Quiescence in monocotyledonous and dicotyledonous somatic 
embryos induced by dehydration. Hortscience, 22, 810–814. https://doi.
org/10.21273/HORTSCI.22.5.810
Guan, Y., Li, S. G., Fan, X. F., & Su, Z. H. (2016). Application of somatic 
embryogenesis in woody plants. Frontiers in Plant Science, 7, 938 https://
doi.org/10.3389/fpls.2016.00938
Kaur K., Dolker D., Behera S., & Pati P.K. (2022). Critical factors inuencing in 
vitro propagation and modulation of important secondary metabolites in 
Withania somnifera (L.) Dunal. Plant  Cell,  Tissue  and  Organ Culture, 
149, 41-60. https://doi.org/10.1007/s11240-021-02225-w
Kubeš,  M.,  Drážná,  N.,  Konrádová,  H.,  &  Lipavská,  H.  (2014).  Robust 
carbohydrate dynamics based on sucrose resynthesis in developing 
Norway spruce somatic embryos at variable sugar supply. In Vitro Cellular 
and Developmental Biology-Plant, 50, 45-57. https://doi.org/10.1007/
s11627-013-9589-6
Litz R.E. (1984a). In vitro somatic embryogenesis from callus of Jaboticaba, 
Myrciaria cauliora. HortScience, 19(1), 62-64. https://doi.org/10.21273/
HORTSCI.19.1.62 
Litz R.E. (1984b). In vitro responses of adventitious embryos of two polyembrionic 
Eugenia species. HortScience, 19(5), 720-722. https://doi.org/10.21273/
HORTSCI.19.5.720
Mazri, M. A., Naciri, R., & Belkoura, I. (2020). Maturation and conversion of 
somatic embryos derived from seeds of olive (Olea europaea L.) cv. 
Dahbia: occurrence of secondary embryogenesis and adventitious 
bud formation. Plants  2020,  9(11),  1489;  https://doi.org/10.3390/
plants9111489.
Murashige, T., & Skoog F. (1962). A revised medium for rapid growth and 
bioassays with tobacco tissue cultures. Physiologia plantarum,  15(3), 
473-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
Oliveira, F. L. R., Sant’anna-Santos, B. F., Fraga, H. P., Degenhardt, J., & Quoirin, 
M. (2022). Embryogenic cultures and somatic embryos development
from mature seeds of jabuticaba (Plinia cauliora (Mart.) Kausel). Anais 
da  Academia  Brasileira  de  Ciências,  94(4): e20201073. https://doi.
org/10.1590/0001-3765202220201073
Perán-Quesada, R., Sánchez-Romero, C., Barceló-Muñoz, A., & Pliego-Alfaro, 
F.  (2004).  Factors  aecting  maturation  of  avocado  somatic  embryos.
Scientia Horticulturae,  102(1), 61–73. https://doi.org/10.1016/j.
scienta.2003.12.003
Rai, M. K., Akhtar, N., & Jaiswal, V. S. (2007). Somatic embryogenesis 
and plant regeneration in Psidium guajava L. cv. Banarasi local. 
Scientia Horticulturae,  113(2), 129–133. https://doi.org/10.1016/j.
scienta.2007.02.010
Rai, M. K., Jaiswal, V. S., & Jaiswal, U.  (2008).  Eect  of ABA and sucrose on 
germination of encapsulated somatic embryos of guava (Psidium guajava 
L.).  Scientia Horticulturae,  117(3), 302–305. https://doi.org/10.1016/j.
scienta.2008.04.011
Ramos, L., Juan, N., Daza, A., Acosta, J. L., Cisneros, F. G., Tamayo Aguilar, Y., 
Hidalgo, E. C., Trejo, S. L., & Rodríguez-Ortiz, G. (2013). Pectimorf ® 
dose for rooting from cuttings of guava variety Cuban Red Dwarf. Revista 
Mexicana de Ciencias Agrícolas, (6), 1093-1105. http://www.scielo.org.
mx/pdf/remexca/v4nspe6/v4spe6a2.pdf
Rezende, J.C., Carvalho C.H.S., Pascual M., Santos A.C.R., & Carvalho SM. 
(2011). Calli induction in leaf explants of coee elite genotypes. Ciência 
Rural, 41, 384-389. https://doi.org/10.1590/S0103-84782011000300004
Riviello-Cogco, E., Robledo-Paz, A., Gutiérrez-Espinosa, M. A., Suárez-Espinosa, 
J., & Mascorro-Gallardo, J. O. (2021). Maduración y germinación de 
embriones somáticos de Coea arabica cv. Colombia. Revista Fitotecnia 
Mexicana, 44(2), 161-161. https://doi.org/10.35196/rfm.2021.2.161
Rong, Y., Junduo L., Ningbo Z., Qinhan Y., & Weirong X. (2023). Phenotypically 
abnormal cotyledonary Vitis vinifera  embryos  dier  in  anatomy, 
endogenous hormone levels and transcriptome proles. Tree Physiology, 
(43),3, 467–485, https://doi.org/10.1093/treephys/tpac129
points out that cells maintained in an environment with low osmotic 
potential lose water and decrease their water potential, altering their 
morphogenenic capacity. This could explain the lower germination 
values at 3 and 5 % of sucrose with 100 % of the MS macronutrients. 
In this sense, Shohael et al. (2013) point out that high concentrations 
of nutritional elements in the culture medium could have an adverse 
eect on the germination of somatic embryos, possibly due to their 
toxicity;  although  this  eect  is closely  related  to  the  absorption  of 
elements and will also depend on the level of the nutritional element 
in the plant tissue.
Rai et al. (2007 and 2008) reported that the germination percentage 
of guava somatic embryos decreased as sucrose concentration 
increased above 3 %. This behavior has been reported to be caused 
by dormancy of somatic embryos, where the resumption of growth 
depends  on  a  specic  treatment  or  condition,  in  addition  to  the 
presence of water (Gray, 1987). On the other hand, Choi and Jeong 
(2002) also reported an inhibition of germination of somatic embryos 
in peanut (Arachis hypogaea L.) due to high sucrose concentrations in 
the culture medium and pointed out that the induction of dormancy in 
somatic embryos was related to the accumulation of ABA as sucrose 
concentration increases and with it a high osmotic stress.
Conclusions
ABA  concentrations  tested  have  negative  eects  on  the 
maturation of somatic embryos of guava var. Cuban Red Draft EEA-
1840. Seventy-three per cent germination was obtained in culture 
media with MS macronutrients at half strength and 3 % sucrose. The 
germination percentage tends to decrease as the concentration of 
macronutrients in MS medium increases.
Literature cited
Alemano L., Berthouly M., & Michaux-Ferreiere N. (1997). Embryogenèses 
somatique du cacaoyer a partir de pièces orales. Plantations, Recherche 
Développement,  3(4), 225-237. https://agritrop.cirad.fr/388362/1/
document_388362.pdf
Canhoto, J. M., Lopes, M. L., & Cruz, G. S. (1999). Somatic embryogenesis and 
plant regeneration in myrtle (Myrtaceae). In Plant Cell, Tissue and Organ 
Culture, 57, 13-21. https://doi.org/10.1023/A:1006273128228
Choi, Y.E., & Jeong, J.H. (2002). Dormancy induction of somatic embryos 
of Siberian ginseng by high sucrose concentrations enhances the 
conservation of hydrated articial seeds and dehydration resistance. Plant 
Cell Reports, 20, 1112–1116. https://doi.org/10.1007/s00299-002-0455-y
Cipriano, J. L., Cruz, A. C. F., Mancini, K. C., Schmildt, E. R., Lopes, J. C., Otoni, 
W. C., & Alexandre, R. S. (2018). Somatic embryogenesis in Carica 
papaya as aected by auxins and explants, and morphoanatomical-related 
aspects. Anais da Academia Brasileira de Ciências, 90, 385-400. https://
doi.org/10.1590/0001-3765201820160252
Corredoira, E., Ballester, A., & Vieitez, A. M. (2003). Proliferation, maturation and 
germination of Castanea sativa Mill. somatic embryos originated from 
leaf explants. Annals of Botany, 92(1), 129–136. https://doi.org/10.1093/
aob/mcg107
Cruz G.S., Canhoto J. M., & Abreu M. (1990). Somatic embryogenesis and plant 
regeneration from zygotic embryos of Feijoa sellowiana Berg. Plant 
Science 66, 263-270. https://doi.org/10.1016/0168-9452(90)90212-7
do Nascimento, A. M. M., Polesi, L. G., Back, F. P., Steiner, N., Guerra, M. P., 
Castander-Olarieta, A., Moncaleán, P., & Montalbán, I. A. (2021). The 
Chemical Environment at Maturation Stage in Pinus spp. Somatic 
Embryogenesis: Implications in the Polyamine Prole of Somatic Embryos 
and Morphological Characteristics of the Developed Plantlets. Frontiers 
in Plant Science, 12, 771464. https://doi.org/10.3389/fpls.2021.771464
Gao, F., Peng, C., Wang, H., Shen, H., & Yang, L. (2021). Selection of culture 
conditions for callus induction and proliferation by somatic embryogenesis 
of  Pinus koraiensis.  Journal of Forestry Research,  32(2), 483–491. 
https://doi.org/10.1007/s11676-020-01147-1