This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Conde et al. Rev. Fac. Agron. (LUZ). 2023 40(3): e234024
5-5 |
surface drip and subsurface drip at 20 cm. Likewise, the treatments 
irrigated by surface drip and subsurface drip at 20 cm also presented 
statistical dierences (p˂0.001), with a dierence of 15 % less water 
applied for the treatment irrigated by subsurface drip at 20 cm. 
Research conducted in China by Yan et al.  (2016),  applied  water 
sheets in subsurface drip irrigation at 30 cm depth of 162 mm (1,620 
m
3
.ha
-1
).
Referring  to  water  productivity,  they  presented  statistical 
dierences  (p˂0.003)  between  the  furrow  irrigated  treatment  and 
those irrigated by surface drip and subsurface drip at 20 cm, for 
furrow irrigation  a  water productivity of  2.63  kg.m
-3
 was  obtained, 
for  surface  drip  irrigation  water  productivity  was  7.02  kg.m
-3
, and 
for subsurface drip irrigation at 20 cm of 8.23 kg.m
-3
. Research by 
Stanghellini (2010), found that the average water productivity in the 
65-country drip-irrigated maize crop was 7.0 kg.m
-3
.
Similarly, water productivity, the treatments irrigated by surface 
drip  and  subsurface  drip  at  20  cm,  presented  statistical  dierences 
(p˂0.003) (table 3). Water productivity in the treatment irrigated by 
subsurface drip at 20 cm, in relation to water productivity in furrow 
irrigation  was  3.1  times  higher,  and  1.2  times  higher  than  water 
productivity in surface drip irrigation.
Conclusions
The management plan for furrow, surface drip and subsurface drip 
irrigation generates dierent strategies for its use and management, 
by  having  dierent  frequencies  and  number  of  irrigations.  Furrow 
irrigation required less frequency and fewer irrigations, in contrast to 
surface and subsurface drip irrigation at 20 cm, which were applied 
with a higher frequency and greater number of irrigations. The volume 
of water supplied  by furrow irrigation was greater than the volume 
of water supplied by surface and subsurface drip irrigation systems. 
Water productivity was  higher  with  subsurface drip irrigation at 20 
cm.
Literature cited
Alarcón, J., (2020). El agua como fuerza motriz de las plantas. Academia de 
Ciencias de la Región de Murcia. Instituto de España. https://www.um.es/
acc/wp-content/uploads/Alarcon-Academico-DiscursoyContestacion.pdf 
Al-Ghobari, H. and Dewidar, A. (2018). Integrating decit irrigation into surface 
and subsurface drip irrigation as a strategy to save water in arid regions. 
Agricultural Water Management,  209, 55-61. https://DOI:10.1016/j.
agwat.2018.07.010.
Droogers, P. and Kite, G. (1999). Water productivity from integrated basin 
modeling.  Irrigation and drainage systems, 13, 275-290. https://doi.
org/10.1023/A:1006345724659
Fuentes, J., (2002). Curso de riego para regantes, Ministerio de Agricultura Pesca 
y alimentación, Ediciones Mundi Prensa, España. 
Gobierno Autónomo Descentralizado Provincial de El Oro. (2021). Plan de 
Desarrollo y Ordenamiento Territorial de La Provincia de El Oro 2020 - 
2030. Gobierno Autónomo Descentralizado Provincial de El Oro. https://
datos.eloro.gob.ec/PDF%20PDYOT/PDYOT%20PROVINCIAL%20
EL%20ORO.pdf
Guevara, A., Bárcenas, G., Salazar, F., González, E. & Suzán, H. (2005). Alta 
densidad de siembra en la producción de maíz con irrigación por goteo 
subsupercial.  Agrociencia, 39(4), 431-439. https://www.redalyc.org/
pdf/302/30239407.pdf
Gurovich, L., (1985). Fundamentos y diseño de sistemas de riego. Instituto 
Interamericano de Cooperación para la Agricultura (IICA). San José 
Costa Rica. http://repositorio.iica.int/bitstream/handle/11324/7213/
BVE18040268e.PDF?sequence=1&isAllowed=y.
Irmak, S., Djaman, K. & Rudnick, D.R. Eect of full and limited irrigation amount 
and frequency on subsurface drip-irrigated maize evapotranspiration, 
yield,  water  use  eciency  and  yield  response  factors.  Irrigation 
Science 34, 271–286 (2016). https://doi.org/10.1007/s00271-016-0502-z.
Jeswani,  H.K.,  Azapagic,  A.,  (2011).  Water  footprint:  methodologies  and  a 
case  study  for  assessing  the  impacts  of  water  use.  Journal of Cleaner 
Production. 19, 1288-1299. DOI:10.1016/j.jclepro.2011.04.003.
Kafka,  U.  and  Tarchitzky  J.  (2012).  Fertirrigación: Una herramienta para una 
eciente fertilización y manejo de agua. Suiza.
Lucero-Vega, G., Troyo-Diéguez, E., Murillo-Amador, B., Nieto-Garibay, A., 
Ruíz-Espinoza, F.H., Beltrán-Morañes, F.A. & Zamora-Salgado, S (2017). 
Diseño de un sistema de riego subterráneo para abatir la evaporación en 
suelo desnudo comparado con dos métodos convencionales. Agrociencia. 
51, 487-505. https://www.scielo.org.mx/scielo.php?script=sci_
arttext&pid=S1405-31952017000500487
Martínez, J.  and  Reca, J.  (2014). Water use  eciency  of surface drip  irrigation 
versus an alternative subsurface drip irrigation method. Journal of 
Irrigation and Drainage Engineering. 140(10).  https://doi.org/10.1061/
(asce)ir.1943-4774.0000745
Organización de las Naciones Unidas para la Agricultura y la Alimentación (FAO, 
2019). El estado mundial de la agricultura y la alimentación. https://www.
fao.org/3/ca6030es/ca6030es.pdf.
Shen, D., Shang, G., Xie, R., Ming, B., Hou, P., Xue, J., Li, S., & Wang, K. (2020). 
Improvement in Photosynthetic Rate and Grain Yield in Super-High-
Yield Maize (Zea mays L.) by Optimizing Irrigation Interval under Mulch 
Drip Irrigation. Agronomy (Basel, Switzerland), 10(11), 1778. https://doi.
org/10.3390/agronomy10111778
Siebert,  and  S.,  Döll,  P.  (2010).  Quantifying  blue  and  green  virtual  water 
contents  in  global  crop  production  as  well  as  potential  production 
losses  without  irrigation,  Journal. Hydrology,  384,198207.
https://saiplatform.org/uploads/Library/SiebertandDoell2010_
quantifyingblueandgreenvirtualwatercontentofcrops.pdf.
Stanghellini, C. (2010). Water  use eciency in tomato. Practical Hidroponics y 
Greenhouses. p. 52-59.
Subsecretaría del Agua (SENAGUA) (2019). Plan Nacional de Riego y Drenaje 
2019-2027. Quito-Ecuador. https://prefecturadeesmeraldas.gob.ec/
docs/8_plan_nacional_de_riego_y_drenaje.pdf.
Subsecretaría de Riego y Drenaje (SENAGUA). (2016). Propuesta de 
Modelo de Gestión Integral del Riego en el Ecuador. Subsecretaría 
de Riego y Drenaje. http://www2.competencias.gob.ec/wp-content/
uploads/2021/03/01-06IGC2016-MGRIEGO-SENAGUA-MODELO-
DE-GESTIO%CC%81N-INTEGRAL-DEL-RIEGO.pdf
Villaseñor, D., Chabla, J. and Luna, E. (2015). Caracterización física y clasicación 
taxonómica  de  algunos  suelos  dedicados  a  la  actividad  agrícola  de  la 
provincia de El Oro. CUMBRES, Revista Cientíca, 1(2), 28 – 34 https://
doi.org/10.48190/cumbres.v1n2a5
Zhang, G., Shen, D., Ming, B., Xie, R., Jin, X., Liu, C., Hou, P., Xue, J., Chen, 
J., Zhang, W., Liu, W., Wang, K., Li, S. (2019). Using irrigation intervals 
to optimize water-use eciency and maize yield in Xinjiang, northwest 
China. The Crop Journal, 7(3), 322-334. https://www.sciencedirect.com/
science/article/pii/S2214514119300042.
Yan Mo, Guangyong Li, Dan Wang (2016). A sowing method for subsurface drip 
irrigation that increases the emergence rate, yield, and water use eciency 
in spring corn. Agricultural Water Management, 179(1), 288-295. https://
doi.org/10.1016/j.agwat.2016.06.005