
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Rincón-Acosta et al. Rev. Fac. Agron. (LUZ). 2023 40(2): e2340135-6 |
higher than 75 °C, signicantly decrease their stability; reported ES 
values are in the order of 85 % (López-Franco et al., 2015; Vasile et 
al., 2016). This eect has also been evidenced in emulsions prepared 
with commercial galactomannans (Wu et  al., 2009) and obtained 
from Prosopis spp. (López-Franco et al., 2013).
Stability of emulsions as a function of storage days.
Figure 5 shows a progressive decrease in absorbance values as 
a  function  of  days  of  storage. A  signicant  decrease in  absorbance 
(0.84) was observed on day 10, with respect to those obtained at 0 
hours (1.10) and 48 hours (1.02), respectively; suggesting emulsion 
destabilization causing emulsion rupture.
Figure 5. Emulsifying activity of Prosopis juliora gum exudate as 
a function of storage time.
The behavior obtained in the present study (gure 5), is comparable 
to those reported for emulsions prepared with Prosopis spp. gum and 
formulated with gum arabic (0.5 % m/v) (López-Franco et al., 2015; 
Vasile  et  al., 2016), which corroborates the potential emulsifying 
capacity of the gum studied.
The protein content in the gums/hydrocolloids is determinant in the 
potential emulsifying capacity of these natural polymers. The protein 
present in the gum exudate of P. juliora (16.89 + 0.51 %) is higher 
than that reported for the Prosopis spp. gum (6.98 + 0.13 %) (López-
Franco et al., 2012), Prosopis alba (13.81 + 0.33 %) (Vasile et  al., 
2016), and signicantly higher than that presented by Acacia senegal 
(1.37 + 0.04 %) (López-Franco et  al., 2012). The protein fraction 
associated with the polysaccharide acts as a hydrophobic group 
(anchoring or binding point), responsible for the emulsifying activity 
(Dickinson, 2011; Dickinson, 2012). On the other hand, preliminary 
studies of the polysaccharide isolated from the exudate of P. juliora, 
showed a large proportion of methyl groups (methylated glucuronic 
acid residues) at the periphery of the structure of this polymer, as 
has been reported for most Prosopis spp. gums (Vasile et al., 2016; 
López-Franco et al., 2015; López-Franco et al., 2012; López-Franco 
et al 2008), which would increase its emulsifying power.
Conclusions
The gum exudate of P. juliora studied at 0.5 % m/v, decreases the 
surface and interfacial tension values, which evidences the potential 
emulsifying activity (EA) of this polysaccharide. The obtained values 
of EA and emulsion stability indicate that P. juliora gum contributes 
to improve the capacity and speed of adsorption of molecules between 
the dispersed phase and continues to form a stable emulsion. The 
surfactant and emulsifying activity of the gum studied is associated 
with the high protein content and the presence of methyl groups in its 
structure. Therefore, the gum exudate of Prosopis juliora constitutes 
a  promising  source of  hydrocolloids  as  an  emulsier that  could  be 
evaluated in the manufacture of pharmaceuticals, food, and even 
cosmetics. Additionally, it constitutes an unexploited natural resource 
that would contribute to the development of the South American 
regional economies where this species grows.
Literature cited
Al-Assaf S., Sakata M., McKenna C., Aoki H. & Phillips G. O. (2009). Molecular 
associations in Acacia gums. Journal of Structural Chemistry. 20: 325–
336. DOI:10.1007/s11224-009-9430-3
Bhushan B. & Annapure S. (2018). Physicochemical, functional and rheological 
investigation of Soymida febrifuga exudate gum. International Journal of 
Biological  Macromololecules  111:  1116-1123.  https://doi.org/10.1016/j.
ijbiomac.2018.01.117
Bhushan B., Chaudhari U. & Annapure S. (2020). Physiochemical and rheological 
characterization of Pithecellobium  dulce  (Roxb.) benth gum exudate 
as a potential wall material for the encapsulation of rosemary oil. 
Carbohydrate Polymer Technologies and Applications 1:100005. https://
doi.org/10.1016/j.carpta.2020.100005. 
Chávez-Narváez G., Arenas G., Parra-Castillo I., Luzardo-Morillo M., Bravo 
B.,  Ysambertt  F.  &  Márquez  N.  (2009).  Estudio  de  las  variables 
sicoquímicas en el proceso de micelización de mezclas de surfactantes 
no-iónicos polietoxilados en la interfase agua/aire Parte I: efecto de 
la salinidad. Ciencia  17(3):  235–244.  https://www.researchgate.net/
publication/272507552_Estudio_de_las_variables_sicoquimicas_en_
el_proceso_de_micelizacion_de_mezclas_de_surfactantes_no-ionicos_
polietoxilados_en_la_interfase_aguaaire_Parte_I_efecto_de_la_salinidad
Clamens C., Rincón F., Sanabria L., Vera A. & León de Pinto G. (2000). 
Species widely disseminated in Venezuela which produce gum exudate. 
Food  Hydrocolloids  14(3):  253-257.  https://doi.org/10.1016/S0268-
005X(00)00004-7
Dickinson E. (2012). Emulsion gels: The structuring of soft solids with protein-
stabilized oil droplets. Food  Hydrocolloids  28:  224-241.  https://doi.
org/10.1016/j.foodhyd.2011.12.017
Dickinson E. (2011). Mixed biopolymers at interfaces: Competitive adsorption 
and multilayer structures. Food  Hydrocolloids  25:  1966–1983.  https://
doi.org/10.1016/j.foodhyd.2010.12.001
Dickinson  E.  (2009).  Hydrocolloids  as  emulsiers  and  emulsion  stabilizers. 
Food  Hydrocolloids  23(6):  1473 -1482. https://doi.org/10.1016/j.
foodhyd.2008.08.005
Garti N., Slavin Y. & Aserin A. (1999). Surface and emulsication of new gum 
extracted from Portulaca  oleracea.  Food  Hydrocolloids  13: 145-155. 
https://doi.org/10.1016/S0268-005X(98)00082-4. 
Grein A., Silva B.C., Wendel C.F., Tischer C.A., Sierakowski M.R. & Moura 
A.B. (2013). Structural characterization and emulsifying properties of 
polysaccharides of Acacia mearnsii de Wild gum Carbohydrate Polymers 
92: 312–320. https://doi.org/10.1016/j.carbpol.2012.09.041
Huang X., Kakuda Y. & Cui W. (2001). Hydrocolloids in emulsions: Particle size 
distribution and interfacial activity. Food  Hydrocolloids 15 (4-6):  533–
542. https://doi.org/10.1016/S0268-005X(01)00091-1
Lee S. J. & McClements D. J. (2010). Fabrication of protein-stabilized 
nanoemulsions using a combined homogenization and amphiphilic 
solvent dissolution/evaporation approach. Food Hydrocolloids 24: 560–
569. https://doi.org/10.1016/j.foodhyd.2010.02.002
Licá I. C. L., dos Santos Soares A. M., de Mesquita L. S. S. & Malik S. (2018). 
Biological properties and pharmacological potential of plant exudates. 
Food Research International 105: 1039–1053. https://doi.org/10.1016/j.
foodres.2017.11.051Get rights and content
López-Franco Y. L., Calderón de la Barca A. M., Valdez M. A., Peter M. G., 
Rinaudo M. & Chambat G. (2008). Structural characterization of mesquite 
(Prosopis velutina) gum and its fractions. Macromolecular Bioscience 8: 
749-757. https://doi.org/10.1002/mabi.200700285. 
López-Franco Y. L., Cervantes-Montaño C. I., Martínez-Robinson K. G., 
Lizardi-Mendoza J. & Robles-Ozuna L.E. (2013). Physicochemical 
characterization and functional properties of galactomannans from 
mesquite seeds (Prosopis spp.). Food Hydrocolloids 30: 656-660. https://
doi.org/10.1016/j.foodhyd.2012.08.012.
López-Franco Y., Córdova-Moreno R. E., Goycoolea F. M., Valdez M., Juárez-
Onofre J. & Lizardi-Mendoza J. (2012). Classication and physicochemical 
characterization  of  mesquite  gum  (Prosopis  spp.).  Food  Hydrocolloids 
26, 159-166. https://doi.org/10.1016/j.foodhyd.2011.05.006 
López-Franco Y.L., Gooycolea F.M. & Lizardi-Mendoza J. (2015). Gum 
of  Prosopis/Acacia Species. In: Ramawat, K., Mérillon, JM. (eds) 
Polysaccharides. Springer, Cham. 641–662. https://doi.org/10.1007/978-
3-319-16298-0_14. 
Mudgil  D.  &  Barak  S,  (2020).  Mesquite  gum  (Prosopis gum): Structure, 
properties & applications - A review. International Journal of Biological 
Macromolecules  (159):15 1094-1102. https://doi.org/10.1016/j.
ijbiomac.2020.05.153.