This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Bentancort et al. Rev. Fac. Agron. (LUZ). 2023 40(1): e234005
5-6 |
therefore we need more evidence to demonstrate direct degradation 
of PS by Pseudomonas psychrophila, Brevibacterium sandarakinum, 
Carnobacterium maltaromaticum, Pseudomonas sp., Providence sp. 
and Corynebacterium sp.
The complex biodegradation mechanisms of both polystyrene 
(PS) and polyethylene (PE) have yet to be well established. The 
biodegradation process has been studied using pure bacterial cultures 
and complex associations, with results that indicate that various 
abiotic and biotic factors play a vital role in the biodegradation of 
these plastic polymers in the environment, and particularly in the 
digestive system of moths (Ghatge et al., 2020).
Conclusions
We were able to characterise the intestinal microora of the wax 
moth (G. mellonella), detecting the presence of bacteria from genera 
linked with benets to the health, viability and nutrition of the host 
organisms, namely Carnobacterium maltaromaticum, Brevibacterium 
sandarakinum, Pseudomonas psychrophila, Pseudomonas sp., 
Providence  sp., Corynebacterium sp. These bacteria may play an 
important role in the formation of microbial biolms that can foment 
the degradation of low density polymers. However further studies 
are needed to verify their action, in isolation or in consortium, in the 
degradation  of  these  polymers  under  dierent  conditions  of  larval 
development.
Funding source
The project “Biodegradation of plastics (expanded polystyrene), 
through the identication of microorganisms in the digestive tract of 
insects as a potential biotechnological mechanism for the management 
and decontamination of ecosystems”, code 2018PRO-XA-02, from 
the internal competition line of the Universidad Católica de Temuco, 
Temuco, Chile, for the nancing of this work.
Cited literature
Abrusci, C., Pablos, J., Corrales, T., López, J., González, A., Marín, A. & 
Catalina, F. (2011). Biodegradación por bacterias de lmes de polietileno 
fotodegradado. Efecto de aditivos pro-oxidantes. Revista de Plásticos 
Modernos: Ciencia y Tecnología de Polímeros,  660, 99-104. https://
dialnet.unirioja.es/servlet/articulo?codigo=3749134.
Agudelo-Londoño, N., Torres-Taborda, M.M., Alvarez-López, C. y Vélez-
Acosta, L.M. (2015). Bacteriocinas producidas por bacterias ácido 
lácticas y su aplicación en la industria de alimentos. Revista Alimentos 
Hoy, 23, 186-205. https://alimentoshoy.acta.org.co/index.php/hoy/article/
viewFile/356/306
Brandon, A.M., Gao, S.H., Tian, R., Ning, D., Yang, S.S., Zhou, J., Wu, W.M. 
& Criddle, C.S. (2018). Biodegradation of polyethylene and plastic 
mixtures in mealworms (larvae of Tenebrio molitor) and eects on the gut 
microbiome. Environmental Science & Technology, 52, 6526-6533. doi: 
https://doi.org/10.1021/acs.est.8b02301
Bombelli, P., Howe, J. & Bertocchini, C. (2017). Polyethylene bio-degradation by 
caterpillars of the wax moth Galleria mellonella. Current Biology, 27(8), 
292-293. doi: https://doi.org/10.1016/j.cub.2017.02.060
Frías, C., Ize, I. & Gavilán, A. (2003). La situación de los envases de plástico 
en México. Gaceta Ecológica,  69, 67-82. https://www.redalyc.org/
pdf/539/53906905.pdf
Geyer, R., Jambeck, J. & Lavender, K. (2017). Production, use, and fate of all 
plastics ever made. Science Advances, 3(7), e1700782. DOI: 10.1126/
sciadv.1700782
Ghatge, S., Yang, Y., Ahn, J.H. & Hur, H.G. (2020). Biodegradation of 
polyethylene: a brief review. Applied Biological Chemistry, 63, 27. doi: 
https://doi.org/10.1186/s13765-020-00511-3.
Hadad, D., Geresh, S. & Sivan, A. (2005). Biodegradation of polyethylene by 
the thermophilic bacterium Brevibacillus borstelensis. Journal of Applied 
Microbiology, 98, 1093-1100. doi: 10.1111/j.1365-2672.2005.02553.x
Huerta, L., Wanga, E., Gertsen, H., Gooren, H., Peters, P., Salanki, T., Van 
Der Ploeg, M., Besseling, E., Koelmans, A. & Geissen, V. (2016). 
Microplastics in the terrestrial ecosystem: implications for Lumbricus 
terrestres (Oligochaeta, Lumbricidae). Environmental Science & 
Technology, 50, 2685-2691. doi: https://doi.org/10.1021/acs.est.5b05478
Huerta, L., Wanga, E., Thapa, B., Yang, X., Gertsen, H., Salánki, T., Geissen, V. 
& Garbeva, P. (2018). Decay of low-density polyethylene by bacteria 
extracted from earthworm’s guts: A potential for soil restoration. Science 
of The Total Environment, 624, 753-757. doi: https://doi.org/10.1016/j.
scitotenv.2017.12.144
Kämpfer, P., Schäfer, J., Lodders, N. & Busse, H.J. (2010). Brevibacterium 
sandarakinum sp. nov., isolated from a wall of an indoor environment. 
International Journal of Systematic and Evolutionary Microbiology, 60, 
909-913. doi: 10.1099/ijs.0.014100-0
Kim, H.R., Lee, H.M., Yu, H.C., Jeon, E., Lee, S., Li, J. & Kim, D.H. (2020). 
Biodegradation of polystyrene by Pseudomonas sp. isolated from the gut 
of superworms (Larvae of Zophobas atratus). Environmental Science & 
Technology, 54, (11):6987-6996. doi: 10.1021/acs.est.0c01495.
Kong, H. G., Kim, H. H., Chung, J. H., Jun, J. H., Lee, S., Kim, H. M., et al. (2019). 
The  Galleria mellonella hologenome supports microbiota-independent 
metabolism of long-chain hydrocarbon beeswax. Cell Reports, 26, 2451–
2464. doi: https://doi.org/10.1016/j.celrep.2019.02.018.
Kumar, S. & Raut, S. (2015). Microbial degradation of low density polyethylene 
(LDPE): A review. Journal of Environmental Chemical Engineering, 
3(1), 462-473. doi: https://doi.org/10.1016/j.jece.2015.01.003
Leisner, J.J., Laursen, B.G., Djamel, H.P. & Dalgaard, P. (2007). Carnobacterium: 
positive and negative ejects in the environment and in foods. 
FEMS Microbiology Reviews, 31, 592-613. doi: 10.1111/j.1574-
6976.2007.00080.x
Lewin, G.R., Marc, C.C., Horn, H.A., Mcdonald, B.R., Stankey, R.J., Fox, B.G. 
& Currie, C.R. (2016). Evolution and ecology of Actinobacteria and their 
bioenergy applications. Annual Review of Microbiology, 70, 235-254. doi: 
10.1146/annurev-micro-102215-095748.
Lou, Y., Ekaterina, P., Yang S.S., Lu, B., Liu, B., Ren, N., Corvini, P., & Xing, 
D. (2020). Biodegradation of polyethylene and polystyrene by greater 
wax moth larvae (Galleria mellonella  L.)  and  the  eect  of  co-diet 
supplementation on the core gut microbiome. Environmental Science 
& Technology, 54, 2821-2831. doi:https://dx.doi.org/10.1021/acs.
est.9b07044
Mason,  C.J.,  Clair,  A.,  Peier,  M.,  Gomez,  E.,  Jones,  A.G.,  Felton,  G.W.  & 
Hoover,  K.  (2020).  Diet  inuences  proliferation  and  stability  of  gut 
bacterial populations in herbivorous lepidopteran larvae. PLoS ONE, 
15(3), e0229848. doi: 10.1371/journal.pone.0229848
Mukherjee, K., Raju, R., Fischer, R. & Vilcinskas, A. (2013). Galleria mellonella 
as a model host to study gut microbe homeostasis and brain infection by 
the human pathogen Listeria monocytogenes. Advances in Biochemical 
Engineering / Biotechnology, 135, 27-39. doi: 10.1007/10_2013_203
Ng, E., Huerta, E., Eldridge, S., Johnston, P., Hu, H., Geissen, V. & Chen, D. 
(2018).  An overview of microplastic and nanoplastic pollution in 
agroecosystems. Science of The Total Environment, 627, 1377-1388. doi: 
https://doi.org/10.1016/j.scitotenv.2018.01.341
 Ren, L., Men, L., Zhang, Z., Guan, F., Tian, J., Wang, B., Wang, J., Zhang, Y. & 
Zhang W. (2019). Biodegradation of polyethylene by Enterobacter sp. 
D1 from the guts of wax moth Galleria mellonella. International Journal 
of Environmental Research and Public Health,  16,  1941. doi:10.3390/
ijerph16111941.
Rizzi, A., Crotti, E., Borruso, L., Jucker, C., Lupi, D., Colombo, M. & Daonchio, 
D. (2013). Characterization of the bacterial community associated with 
larvae and adults of Anoplophora chinensis collected in Italy by culture 
and culture-independent methods. BioMed Research International, 2013, 
420287. doi: 10.1155/2013/420287
Ruiz, J., Vilanova-Cuevas, B., Alvarez, A., Martín, E., Malizia, A., Galindo-
Cardona, A., de Cristóbal, R., Occhionero, M., Chalup, A., Monmany-
Garzía, A. & Godoy-Vitorino, F. (2022). The bacterial and fungal gut 
microbiota of the greater wax moth, Galleria mellonella L. consuming 
polyethylene and polystyrene. Frontiers in Microbiology, 13, 918861. 
861. doi: 10.3389/fmicb.2022.918861
Santo, M., Weitsman, R. & Silvan, A. (2013). The role of the copper-binding 
enzyme – laccase - in the biodegradation of polyethylene by the 
actinomycete  Rhodococcus ruber.  International Biodeterioration & 
Biodegradation, 84; 204-210. https://doi.org/10.1016/j.ibiod.2012.03.001
Shannon, A.L., Attwood, G., Hopcroft, D.H. & Christeller,J.T. (2001). 
Characterization of lactic acid bacteria in the larval midgut of the 
keratinophagous lepidopteran, Hofmannophila pseudospretella. Letters in 
Applied Microbiology, 32, 36-41. doi: 10.1046/j.1472-765x.2001.00854.x
Silva, A.B., Bastos, A.S., Justino, C., Da Costa, J., Duarte, A. & Rocha-Santos, 
T. (2018). Microplastics in the environment: Challenges in analytical 
chemistry, A review. Analytica Chimica Acta, 1017; 1-19. doi: https://doi.
org/10.1016/j.aca.2018.02.043
Suzuki, M., Taylor, L. & Delong, E. (2000). Quantitative analysis of small-subunit 
rRNA  genes  in  mixed  microbial  populations  via  5′-Nuclease  assays. 
Applied and Environmental Microbiology, 66(11), 4605-4614. doi: 
https://doi.org/10.1128/AEM.66.11.4605-4614.2000
Torres De La Cruz, M., Cortez, H., Ortiz, C., Cappello, S. y Pérez De La 
Cruz, M. (2014). Cepas monospóricas de Metarhizium anisopliae y su