
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
    Rev. Fac. Agron. (LUZ). 2023, 40(1): e234004. Enero-Marzo. ISSN 2477-9407.6-7 |
The  gure  4  shows  the  logarithmic dissipation  of  imidacloprid 
for the two types of application, evidencing that AAF and GPP also 
caused a staggered dissipation in the peel and pulp of the avocado as 
time increases.
Figure 4. Logarithmic dissipation of imidacloprid for the two 
types of application (spray and drip) on avocado peel 
and pulp.
In a study of imidacloprid dissipation by Zhai et al. (2022) in 
Chinese onion (Allium tuberosum) they observed dissipation dynamics 
consistent with rst order kinetics, with nal residual levels between 
0.00923 and 0.166 mg.kg
-1
 below the MRL (1 mg.kg
-1
) with a risk 
assessment index <1 indicating that they are safe for consumption. 
Similar results were obtained by Mohapatra et al. (2019) in 
the evaluation of imidacloprid residue levels in pomegranate fruits 
(Punica granatum)  for  two  years,  they  found  rst  order  reaction 
kinetics with a degradation half-life of 8 to 11.1 days; the MRL of 
imidacloprid in pomegranate were lower than their MRL (1 mg.kg
-1
), 
with a pre-harvest interval of only one day. On the other hand, Jawad 
& Hermize (2020) in an analysis of imidacloprid residues on fruits of 
sweet Karisma bell pepper (Capsicum annum L), reported that after 
eight days, the residual of imidacloprid was 0.07 mg.kg
-1
 lower than 
the MRL.
According to Zhai et al. (2022) and Hladik et al. (2018), the 
agroecological zone where a pesticide is applied would have its eect 
mainly on the daily dissipation rate of the residue. In this regard, 
Pereira et al. (2021), and Zhou et al. (2021), highlight that in arid areas, 
high temperatures, and wind action would be the determining factors 
in pesticide dissipation. In the same order of ideas, Zhou et al. (2021), 
and Peng et al. (2021) state that the dissipation dynamics establishes 
a rapid initial decrease depending on climatic conditions. According 
to Pang et al. (2020), the dissipation of systemic insecticides such as 
imidacloprid in avocado fruit pulp is greater than the dissipation of 
insecticides in the peel; this degradation is complex and the rate of 
internal metabolization is variable and is determined by enzymatic 
actions, characteristic of plant tissue. However, Gonzalez (2009) 
refers that the residues and dissipation of a pesticide are inuenced 
by the application coverage and the size of the application drop; the 
smaller the pesticide drop, the greater the persistence of the pesticide 
and therefore the greater the residual. On the other hand, Mohapatra 
et al. (2019), state that the increase in temperature facilitates several 
processes involved in the dissipation of an insecticide, so an increase 
in temperature favors the solubility of the insecticide. Imidacloprid 
presents high solubility in water, favoring its dissipation.
The information provided by this research is of utmost importance 
for phytosanitary safety and food safety, demonstrating that the 
manufacturer’s recommendation regarding the insecticide withdrawal 
period (7 days) is not met when 1.0 and 1.5 mL.L
-1
 AAF are applied, 
because the residual of imidacloprid in the peel exceeded the MRL. 
No levels exceeding the MRL were detected in the pulp. In this sense, 
it is advisable for future research to develop a more appropriate and 
representative withdrawal period for avocado cultivation in arid areas 
where its cultivation is of great importance.
Conclusions
It was determined that the application of imidacloprid by drip at 
the foot of the plant at a dose of 0.5 mL.L
-1
 caused the lowest residual, 
and the highest percentage of dissipation in the peel and pulp of 
avocado fruits, reaching the highest daily dissipation rate in the pulp. 
Spraying imidacloprid to the foliage at a dose of 1.5 mL.L
-1
 caused 
the highest residual, and the lowest percentage of dissipation in the 
peel and pulp of the fruits, generating residues of imidacloprid in the 
peel that exceeded the MRL. None of the treatments exceeded the 
MRL in the pulp. The dissipation rate was higher in the pulp than in 
the peel. The imidacloprid dissipation curve model was t to a rst-
order logarithmic equation.
Literature cited
Aguirre, L., García, F., García, J., Illera, M., Juncabella, M., Lizondo, M., Lluch, 
A., Martín, M., Mateos, B., Ochoa, C., Ortega, M., Pujol, M., Reig, M., 
Torres, M., Antunez, S., Carro, A., García, A., Niubo, C., Oliver, M., 
Caturla, M., Celma, C., Encima, G., Jansat, J., Nieto, C., Pérez, J., Rovira, 
M., Tost, D., y Cortez, R. (2001). Validación de métodos analíticos. 
Asociación Española de Farmacéuticos de la Industria. Barcelona, 
España. 315 ppx. https://es.scribd.com/doc/260069977/Validacion-de-
Metodos-Analiticos-Asociaciacion-Espanola-de-Farmaceuticos-de-la-
industria-pdf
Agriquem - AGQ (2021). Identicación de las principales materias causantes de 
positivos de plaguicidas en Palto. https://agqlabs.pe/2021/03/30/cambios-
en-limites-de-residuos-de-plaguicidas-en-palto/
AOAC.  (2007).  Ocial  Method  2007:01.  Pesticide  Residues  in  Foods  by 
Acetonitrile. Extraction and Partitioning with Magnesium Sulfate. 
https://nucleus.iaea.org/sites/fcris/Shared%20Documents/SOP/
AOAC_2007_01.pdf
Barrientos, A., García, E., y Avitia, E. (1996). Anatomía del fruto de aguacate. 
Revista Chapingo Serie Horticultura, 2(2),189-198. https://doi.
org/10.5154/r.rchsh.1995.06.041
Bondareva, L., & Fedorova, N. (2021). Pesticides: Behavior in agricultural 
soil and plants. Molecules, 26(17), 5370. https://doi.org/10.3390/
molecules26175370
Castillo, B., Ruiz, J., Manrique, M., y Pozo, C. (2020). Contaminación por 
plaguicidas agrícolas en los campos de cultivos en Cañete (Perú). Revista 
Espacios, 41(10), 1-11. http://www.revistaespacios.com/a20v41n10/
a20v41n10p11.pdf
CFR - Code of federal regulation - USA. (2022). Imidacloprid: tolerances for 
residues. https://www.ecfr.gov/current/title-40/chapter-I/subchapter-E/
part-180/subpart-C/section-180.472
Chandra, R., Sharpanabharathi, N., Prusty, B., Azeez, P., & Kurakalva, R. 
(2021). Organochlorine pesticide residues in plants and their possible 
ecotoxicological and agri food impacts. Scientic  reports, 11(1),17841. 
http://dx.doi.org/10.1038/s41598-021-97286-4 
Collavino, M., y Giménez, R. (2008). Efecto del imidacloprid en el control de la 
polilla del tomate (Tuta absoluta M.). Idesia (Arica), 26(1), 65-72. http://
dx.doi.org/10.4067/S0718-34292008000100009
Delgado-Zegarra, J., Alvarez-Risco, A., y Yañez, J. A. (2018). Uso indiscriminado 
de pesticidas y ausencia de control sanitario para el mercado interno 
en el Perú. Pan American Journal of Public Health, 42,1-6. https://doi. 
org/10.26633/RPSP.2018.3 
Durán-Quirós, A., González-Lutz, M., Vargas-Hernández, G., y Mora-Acedo, D. 
(2017). Situaciones de riesgo potencial relacionadas con la aplicación 
de agroquímicos en los sistemas hortícolas. Agronomía Costarricense, 
41(2), 67-77. http://dx.doi.org/10.15517/rac.v41i2.31300 
Ettiene, G., Bauza, R., Sandoval, L., Medina, D., Raga, J., Quiros, M., 
Petit, Y., Poleo, N., y Dorado, I. (2017). Estudio de sorción de los 
insecticidas imidacloprid y tiametoxam en muestras de suelo. Revista 
de la Facultad de Agronomía de la Universidad del Zulia, 33(4), 458-
481.  https://produccioncienticaluz.org/index.php/agronomia/article/
view/27210/27832
Fernández, M., y Giménez, R. (2005). Impacto de Imidacloprid en la descomposición 
orgánica  edáca  en  cultivo  de  duraznero.  Agricultura Técnica, 65(4), 
370-377. http://dx.doi.org/10.4067/S0365-28072005000400003 
García-Vargas, M., Contreras, M., & Castro, E. (2020). Avocado-Derived Biomass 
as a Source of Bioenergy and Bioproducts. Applied Sciences, 10(22), 
8195. https://doi.org/10.3390/app10228195