This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
    Rev. Fac. Agron. (LUZ). 2022, 39(4): e223955. October-December. ISSN 2477-9407.6-7 |
the soil, managed to increase wheat yield 110 days after sowing under 
greenhouse conditions.
In the present study, it is observed that the control treatment 
showed the lowest yield and was outperformed in all cases and with 
both inoculation methods when compared to treatments in which 
Trichoderma was included. Ruíz-Cisneros et al. (2018), found that T. 
longibrachiatum strains applied to the substrate produced the highest 
tomato yields (Solanum lycopersicum), higher than 240 g per plant, 
compared to the control plants. On the contrary, Brenes-Madriz et 
al. (2019) when applying T. asperellum did not observe signicant 
dierences  between  treatments  on  sweet  pepper  yield  (C. annuum 
L.) under greenhouse conditions. El-Ibrahime and Mourad (2020), 
found that the application of T. viride using the drench method  to 
the soil produced lower yields in sunowers compared to the foliar 
application of T. harzianum; however, both treatments were able to 
outperform the control.
Concerning quinoa, León-Ttacca et al. (2021) found that 
Trichoderma sp. acted as an aggressive mycoparasite, and promoted 
a higher yield of quinoa, a condition that possibly helped to enhance 
the positive eect on yield observed in the present work. Infante et al. 
(2009), pointed out that the more Trichoderma can manifest diverse 
modes of action, the more ecient and lasting can be its favorable 
eect on the crop.
The benets that Trichoderma produces in the plant have been 
widely reported in the literature, so the promotion of higher levels 
of aerial and root development are predisposing conditions for high 
yields, as was observed in the quinoa plants evaluated in this research. 
Likewise, the benecial use of seed pelleting is highlighted, which 
was evident in the response of practically all the variables evaluated.
Conclusions
The seed pelleting method with Trichoderma sp. strains is more 
eective than the drench method to promote the vegetative growth 
of quinoa. It is found that strain TE-7 generates the highest growth 
in plants grown under greenhouse conditions. The grain yield 
is  signicantly  increased  by  the  application  of  Trichoderma sp., 
independently of the inoculation method.
Literature cited
Afzal, I., Javed, T., Amirkhani, M., & Taylor, A. G. (2020). Modern seed 
technology: Seed coating delivery systems for enhancing seed and crop 
performance.  Agriculture,  10(11), 526. https://www.mdpi.com/2077-
0472/10/11/526
Alandia, G., Rodríguez, J. P., Jacobsen, S. E., Bazile, D., & Condori, B. (2020). 
Global expansion of quinoa and challenges for the Andean region. 
Global Food Security, 26 (September), 100429. https://doi.org/10.1016/j.
gfs.2020.100429
Arévalo, E., Cayotopa., J., Olivera, D., Gárate, M., Trigoso, E., Costa, do B., & 
León, B. (2017). Optimización de sustratos para la producción de conidias 
de Trichoderma harzianum por fermentación sólida en la región de San 
Martín. Perú. Revista de Investigaciones Altoandinas,  19(2), 135-144. 
https://dx.doi.org/10.18271/ria.2017.272
Banjac, N., Stanisavljević, R., Dimkić, I., Velijević, N., Soković, M., & Ćirić, A. 
(2021). Trichoderma harzianum IS005-12 promotes germination, seedling 
growth and seedborne fungi suppression in Italian ryegrass forage. Plant 
Soil Environment, 67, 130-136. https://doi.org/10.17221/581/2020-PSE
Baron, N. C., and Rigobelo, E. C. (2022). Endophytic fungi: a tool for plant 
growth promotion and sustainable agriculture. Mycology, 13(1), 39-55. 
https://doi.org/10.1080/21501203.2021.1945699
Benítez, T., Rincón, A. M., Limón, M. C., & Codón, A. C. (2004). Biocontrol 
mechanisms of Trichoderma strains. International Microbiology,  7(4), 
249-260. https://scielo.isciii.es/pdf/im/v7n4/Benitez.pdf
Berg, G. (2009). Plant-microbe interactions promoting plant growth and health: 
Perspectives for controlled use of microorganisms in agriculture. Applied 
Microbiology and Biotechnology, 84(1), 11-18. https://doi.org/10.1007/
s00253-009-2092-7
Brenes-Madriz, J., Zúñiga-Vega, C., Villalobos-Araya, M., Zúñiga-Poveda, C., 
& Rivera-Méndez, W. (2019). Efectos de Trichoderma asperellum en la 
estimulación del crecimiento en chile dulce (Capsicum annum) variedad 
Nathalie en ambientes protegidos. Revista Tecnología en Marcha, 32(3), 
79-86. https://doi.org/10.18845/tm.v32i3.4481 
Camargo-Cepeda, D. F., and Ávila, E. R. (2014). Efectos del Trichoderma sp. 
sobre el crecimiento y desarrollo de la arveja (Pisum sativum L.). Ciencia 
y Agricultura, 11(1), 91. https://:10.19053/01228420.3492
Chagas, L. F. B., Chagas Junior, A. F., Soares, L. P., & Fidelis, R. R. (2017). 
Trichoderma na promoção do crescimento vegetal. Revista de Agricultura 
Neotropical, 4(3), 97-102. https://doi.org/10.32404/rean.v4i3.1529
De Oliveira, J. B., Muniz, P. H. P. C., Peixoto, G. H. S., De Oliveira, T. A. S., 
Duarte, E. A. A., Rodrigues, F., & Carvalho, D. D. C. (2018). Promotion 
of seedling growth and production of wheat by using Trichoderma spp. 
Journal of Agricultural Science, 10(8), 267-276. https://doi.org/10.5539/
jas.v10n8p267
El-Ibrahime, I., and Mourad, K. (2020). Ecacy  of  some  Trichoderma species 
on management of sunower head-rot. Journal of Plant Protection and 
Pathology, 11(11), 537-542. https://doi.org/10.21608/jppp.2020.131796
Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO). 
(2016). Guía del cultivo de la quinoa. Statewide Agricultural Land Use 
Baseline 2015. Food and Agriculture Organization (2a Edición, Vol. 1). 
https://www.fao.org/3/i5374s/i5374s.pdf
García, M., Condori, B., & Del Castillo, C. (2015). Agroecological and 
agronomic cultural practices of quinoa in South America. En: K. Murphy 
and J. Matanguihan (Eds.), Quinoa: Improvement and Sustainable 
Production. (Chapter 3, pp. 25-45). John Wiley & Sons. https://doi.
org/10.1002/9781118628041.ch3
Gaviola, J. C. (2020). Producción de semillas hortícolas. Ediciones INTA. https://
n9.cl/7tvhu
Harman, G. E., and Shoresh, M. (2007). The mechanisms and applications of 
symbiotic opportunistic plant symbionts. En V. M. and G. J. (Eds.), Novel 
Biotechnologies for Biocontrol Agent Enhancement and Management 
(pp. 131-155). https://doi.org/10.1007/978-1-4020-5799-1_7
Instituto Nacional de Estadística e Informática (INEI). (2022). Panorama de 
la Economía Peruana 1950-2021. Instituto Nacional de Estadística e 
Informática. https://n9.cl/teo0w 
Infante, D., Martínez, B., González, N., & Reyes, Y. (2009). Mecanismos de acción 
de  Trichoderma  frente  a  hongos  topatógenos.  Revista de Protección 
Vegetal, 24(1), 14-21. http://revistas.censa.edu.cu/index.php/RPV/article/
view/542/670 
León  Ttacca,  B.,  Mendoza  Coari,  P.,  Soto  Gonzales,  J.  L.,  &  Borja  Loza,  Y. 
R. (2021). Trichoderma  sp.  endóto  y  microorganismos  ecaces  en 
el control de kcona kcona (Eurysacca sp.) y mejora del rendimiento 
de  Chenopodium  quinoa.  Revista Alfa, 5(14), 346-355. https://doi.
org/10.21930/rcta.vol20_num1_art:1251
León Ttacca, B., Ortiz Calcina, N., Condori Ticona, N., & Chura Yupanqui, E. 
(2018). Cepas de Trichoderma con capacidad endotica sobre el control 
del mildiu (Peronospora variabilis Gäum.) y mejora del rendimiento de 
quinua.  Revista de Investigaciones Altoandinas,  20(1), 19-30. https://
dx.doi.org/10.18271/ria.2018.327
Loli Figueroa, O. (2012). Análisis de suelos y fertilización en el cultivo de café. 
https://n9.cl/ltp3j 
López-Valenzuela, B.E, Armenta-Bojórquez, A.D., Hernández-Verdugo, S., 
Apodaca-Sánchez, M.A., Samaniego-Gaxiola, J.A., & Valdez-Ortiz, 
A. (2019). Trichoderma spp. and Bacillus spp. as growth promoters in 
maize (Zea  mays L.). ΦYTON, 9457(88), 37-46. https://doi:10.32604/
phyton.2019.04621 
Ministerio de Desarrollo Agrario y Riego (MINAGRI). (2021). Observatorio 
de las Siembras y Perspectivas de la producción Quinua. Ministerio de 
Desarrollo Agrario y Riego (MINAGRI), Perú. https://n9.cl/bn95f
Robles  Yerena,  L.,  Leyva  Mir,  S.  G.,  Cruz  Gómez,  A.,  Camacho  Tapia,  M., 
Nieto  Ángel,  D.,  Tovar  Pedraza,  J.  M.,  Robles Yerena, L.,  Leyva  Mir, 
S. G., Cruz Gómez, A., Camacho Tapia, M., Nieto Ángel, D., & Tovar 
Pedraza, J. M. (2016, agosto). Fusarium oxysporum Schltdl. y  Fusarium 
solani (Mart.) Sacc. Causantes de la marchitez de plántulas de Pinus 
spp. en vivero. Revista Mexicana de Ciencias Forestales, 7(36), 25-36. 
http://www.scielo.org.mx/scielo.php?script=sci_abstract&pid=S2007-
11322016000400025&lng=es&nrm=iso&tlng=es
Ruíz-Cisneros, M. F., Ornelas-Paz, J. D. J., Olivas-Orozco, G. I., Acosta-Muñiz, 
C. H., Sepúlveda-Ahumada, D. R., Pérez-Corral, D. A., Ríos-Velasco, 
C., Salas-Marina, M. Á., & Fernández-Pavia, S. P. (2018). Efecto de 
Trichoderma spp. y hongos topatógenos sobre el crecimiento vegetal y 
calidad del fruto de jitomate. Revista Mexicana de Fitopatología, 36(3), 
444-456.  https://doi.org/10.18781/r.mex.t.1804-5