This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Hernández et al. Rev. Fac. Agron. (LUZ). 2022, 39(4): e2239475-6 |
formation of globose tyloses in the conducting cells of the xylem was 
also noticeable (Figures 2E, 2F). The systemic invasion of bacteria of 
the Pectobacterium and Dickeya genus through the xylem has been 
documented by several authors (Kastelein et al., 2020; Czajkowski et 
al., 2010; Pérombelon, 2002).
Regarding the presence of tyloses in the xylem of plants affected 
by  P. carotovorum, there are no previous reports in the available 
literature; however, it is assumed that it is possibly a defense reaction 
of the plants of the potato variety studied to the attack of the bacterium, 
as occurs with R. solanacearum and other vascular pathogens (Yadeta 
and Tomma, 2013).  It should be noted that the fact that tylosis is due 
to a reaction to mechanical damage is ruled out since these were not 
observed in the plants of the control treatment.
Conclusions
R. solanacearum and P. carotovorum caused histological changes 
in the stem of S. tuberosum of the Kennebec variety. In the case of 
R. solanacearum, obstruction was predominantly observed in the 
secondary xylem due to the formation of tyloses, which explains the 
wilting of the plants, while in the case of P. carotovorum, the most 
noticeable anatomical change was maceration of the stem tissues, in 
addition to the obstruction in the conducting cells of the xylem due 
to tylosis.
Acknowledgment
The authors express their gratitude to the Council for Scientic 
and Humanistic Development of the Central University of Venezuela 
(CDCH-UCV), for funding this research through Project No. PG- 01-
8720-2013/1.
Literature cited
Agyemang, P. A., Niamul, M. D., Kersey, C. M., & Korsi, C. (2020). The bacterial 
soft rot pathogens, Pectobacterium carotovorum and P. atrosepticum, 
respond to different classes of virulence-inducing host chemical signals. 
Horticulturae, 6 (13), 1-13. https://doi.org/10.3390/horticulturae6010013
Artschwager, E. R. (1920). Pathological anatomy of potato blackleg. Journal of 
Agricultural Research,  20, 325-330. https://handle.nal.usda.gov/10113/
IND43966302
Álvarez, B., Biosca E. G., &   López, M. M. (2010). On the life of Ralstonia 
solanacearum, a destructive bacterial plant pathogen. En: Mendez-Vilas, 
A. (Ed.), Current Research, Technology and Education Topics in Applied 
Microbiology and Microbial Biotechnology  (pp.  267-279).  Formatex 
Research Center. https://www.researchgate.net/publication/267772811
Barras, F., Van Gijsegem, F., &  Chatterjee, A. K. (1994). Extracellular enzymes 
and pathogenesis of soft-rot Erwinia. Annual Review of Phytopathology, 
32, 201–234. https://www.researchgate.net/publication/234838093
Buddenhagen, I. and   Kelman, A. (1964). Biological and physiological aspect 
of bacterial wilt caused by Pseudomonas solanacearum.  Annual 
Review of Phytopathology, 2, 203-230. https://doi.org/10.1146/annurev.
py.02.090164.001223
Charkowski, A. O. (2015).  Biology and control of Pectobacterium  in potato. 
American Journal of Potato Research,  92, 223-229. https://doi.
org/10.1007/s12230-015-9447-7
Charkowski, A. O. (2018). The changing face of bacterial soft-rot diseases. 
Annu. Rev. Phytopathol,  56, 269-288. https://doi.org/10.1146/annurev-
phyto-080417- 045906
Charkowski A., Sharma, K., Parker, M. L., Secor, G. A., & Elphinstone, J. (2020). 
Bacterial diseases of potato. En: Campos, H. y Ortiz, O. (Eds.), The 
Potato Crop  (pp. 351-388). Springer.  https://doi.org/10.1007/978-3-030-
28683-5_10 
Czajkowski R., De Boer, W. J., Van Veen, J. A., &  Van der Wolf, J. M. (2010). 
Downward  vascular  translocation  of  a  green  uorescent protein-tagged 
strain of Dickeya sp. (Biovar 3) from stem and leaf inoculation sites on 
potato.  Phytopathology,  100 (11), 1128–1137. https://doi.org/10.1094/
PHYTO-03-10-0093
Czajkowski, R., Grabe, G. J., &    Van  der  Wolf,  J.  M.  (2009).  Distribution  of 
Dickeya spp. and Pectobacterium carotovorum subsp. carotovorum in 
naturally infected seed potatoes. Eur. J. Plant Pathol.  125, 263–275. 
https://doi.org/10.1007/s10658-009-9480-9
FAOSTAT Food and agriculture data. (2022) Database update on August  https://
www.fao.org/faostat/en/#data/QCL/visualize
Ferreira V., Pianzzola, M. J., Vilaró, F. L., Galván, G. A., Tondo, M. L., Rodriguez, 
M. V., Orellano, E. G., Valls, M., &  Siri M. I. (2017). Interspecic potato 
breeding lines display differential colonization patterns and induced 
defense responses after Ralstonia solanacearum infection. Frontiers in 
Plant Science, 8, 1424. https://doi.org/10.3389/fpls.2017.01424
Fiers, M., Edel-Hermann, V., Chatot, C., Le Hingrat, Y., Alaboivette, C., &  
Steinberg, C. (2012). Potato soil-borne diseases. A review. Agronomy for 
Sustainable Development, 32, 93-132.  https://doi.org/10.1007/s13593-
011-0035-z
Genin, S., and  Denny, T. P. (2012). Pathogenomics of the Ralstonia solanacearum 
species Complex. Annual Review of Phytopathology, 50(1), 67-89. https://
doi.org/10.1146/annurev-phyto-081211-173000
Gayathiri, F., Bharathi B., & Priya K. (2018).  Study of the enumeration of twelve 
clinical important bacterial populations at 0.5 McFarland Standard. 
International Journal of Creative Research Thoughts (IJCRT), 6(2), 880-
893.  https://www.ijcrt.org/papers/IJCRT1807341.pdf
Grimault, V., Gelie, B., Lemattre, M., Prior, P., &  Schmit, J. (1994). Comparative 
histology of resistant and susceptible tomato cultivars infected 
by  Pseudomonas solanacearum. Physiological and Molecular Plant 
Pathology 44, 105-123.  https://doi.org/10.1016/S0885-5765(05)80105-5
Hayward, A. C. (1991). Biology and epidemiology of bacterial wilt caused by 
Pseudomonas solanacearum. Annual Review of Phytopathology, 29, 65– 
87. https://doi.org/10.1146/annurev.py.29.090191.000433
Hernández, Y., Mariño, N., Trujillo, G., &  Urbina, T. (2005) Invasión 
de Ralstonia solanacearum en tejidos de tallos de tomate. Revista de la 
Facultad de Agronomía (LUZ),  22, 181-190. http://ve.scielo.org/scielo.
php?script=sci_arttext&pid=S0378-78182005000200008
Karim, Z., Hossain, M. S., & Begum, M. M. (2018). Ralstonia solanacearum: 
A threat to potato production in Bangladesh.  Fundamental and Applied 
Agriculture 3(1), 407–421. https://doi.org/10.5455/faa.280361
Kashyap, A., Planas-Marqués, M., Capellades, M., Valls, M., & Coll, N. (2021). 
Blocking intruders: inducible physico-chemical barriers against plant 
vascular wilt pathogens. Journal of Experimental Botany,  72(2), 184–
198. https://doi.org/10.1093/jxb/eraa444
Kastelein, P., Förch, M. G., Krijger, M. C., van der Zouwen, P.S., van den Berg, 
W.,  &  van  der  Wolf,  J.M.  (2020).  Systemic  colonization  of  potato 
plants resulting from potato haulm inoculation with Dickeya solani or 
Pectobacterium parmentieri.  Canadian Journal of Plant Pathology 
43(1),1-15. https://doi.org/10.1080/07060661.2020.1777465
Khokhani D, Lowe-Power, T. M., Tran, T.M., & Allen, C. (2017). A single 
regulator mediates strategic switching between attachment/spread 
and growth/virulence in the plant pathogen Ralstonia solanacearum. 
American Society for Microbiology  8(5): 1-20. https://doi.org/10.1128/
mBio.00895-17
Lowe-Power, T. M., Hendrich, C. G., von Roepenack-Lahaye, E., Li, B., Wu, D., 
Mitra, R., Dalsing, B. L., Ricca, P., Naidoo, J., Cook, D., Jancewicz, A., 
Masson, P., Thomma, B., Lahaye, T., Michael, A. J., & Allen, C. (2018a). 
Metabolomics of tomato xylem sap during bacterial wilt reveals Ralstonia 
solanacearum produces abundant putrescine, a metabolite that accelerates 
wilt disease. Environmental Microbiology, 20(4), 1330–1349. https://doi.
org/10.1111/1462-2920.14020
Lowe-Power, T. M., Khokhani, D., & Allen, C. (2018b) How Ralstonia 
solanacearum exploits and thrives in the owing plant xylem environment. 
Trends in Microbiology, 26(11), 929-942.  https://www.researchgate.net/
publication/325941527
Metcalfe, C., and Chalk, L. (1950). Anatomy of the dicotyledons (Vol. II). 
Clarendon Press. https://doi.org/10.1111/j.2042-7158.1950.tb13008.x
Moleleki, L. N., Pretorius, R. G., Tanui, C. K., Mosina, G., & Theron, J. (2017). 
A quorum sensing-defective mutant of Pectobacterium carotovorum ssp. 
brasiliense 1692 is attenuated in virulence and unable to occlude xylem 
tissue of susceptible potato plant stems. Molec. Plant Pathol., 18, 32–44. 
https://doi.org/10.1111/mpp.12372
Nakaho, K., Hibino, H., & Miyawa, H. (2000). Possible mechanisms movement 
of  Ralstonia solanacearum in resistant tomato tissues. Journal of 
Phytopathology,  148(3), 181-190. https://doi.org/10.1046/j.1439-
0434.2000.00476.x
Olivares, B. O., and Hernández, R. A. (2019). Sectorización ecoterritorial para la 
producción agrícola sostenible del cultivo de papa (Solanum tuberosum 
L.) en Carabobo, Venezuela. Ciencia y Tecnología Agropecuaria, 20 (2), 
323-338. https://doi.org/10.21930/rcta.vol20_num2_art:1462
Pérombelon, M. C. (2002). Potato diseases caused by soft rot erwinias: an 
overview of pathogenesis. Plant Pathology,  51, 1–12. https://doi.
org/10.1046/j.0032-0862.2001.Shorttitle.doc.x
Planas-Marquès, M., Kressin, J. P., Kashyap, A., Panthee, D., Louws, F. J., Coll, N. 
S., & Valls, M. (2020). Four bottlenecks restrict colonization and invasion 
by the pathogen Ralstonia solanacearum in resistant tomato, Journal of 
Experimental Botany,  71(6), 2157–2171. https://doi.org/10.1093/jxb/
erz562