This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Varapizuela-Sánchez et al. Rev. Fac. Agron. (LUZ). 2022, 39(4): e2239465-6 |
not  enough  to  stimulate  signicant  changes.  The  maize  coleoptiles 
analyzed in this work that presented higher enzymatic activity and 
greater gene expression were more resistant to infection, unlike those 
that presented low enzymatic activity and gene expression, since 
these changes can be affected by factors such as the environmental 
ones, this is because some samples of the same race present different 
susceptibility.
The resistance of plants to the stress generated by biotic or 
abiotic conditions is a very important issue, since knowing better 
the resistance mechanisms will help to improve the treatments to 
which they are subjected to increase their quality and production. 
Several detoxifying pathways are involved in this process, which are 
comprised of many enzymes that are responsible for reducing and 
cushioning the damage generated by cytotoxic compounds generated 
by adverse growth conditions (Ghosh, 2017; Zhou et  al., 2018). 
Recent studies have shown that resistance to infection by A. avus in 
maize is a trait controlled by multiple genes, however, the behavior of 
these genes reported in hybrids is still unknown in native lines that are 
considered a great source of genomic wealth and that have adapted to 
different growth conditions such as temperature, altitude, humidity, 
among others, prevailing from generation to generation (Rajasekaran 
et al., 2019). It is important to know the natural response mechanisms 
of plants to stress, to nd varieties that are resistant to unfavorable 
growth conditions, minimizing production losses and contamination 
of seeds by fungi and damage to the health of those who consume the 
products.
Conclusions
Faced with the infection of Oaxacan maize coleoptiles by 
Aspergillus  avus, there was a decrease in total proteins and an 
increase in the glyoxalase I response in both gene expression and 
enzymatic activity in samples 1 and 5.
The high activity of the enzyme and expression of the gene 
participate as a response to the infection of native maize, while low 
concentrations of the enzyme and low expression to susceptibility. 
However, the results should be analyzed with subsequent resistance 
or susceptibility tests.
Literature cited
Álvarez-Gerding X., Cortés-Bullemore R., Medina C., Romero-Romero J. L., 
Inostroza-Blancheteau C., Aquea F. & Arce-Johnson P. (2015). Improved 
salinity tolerance in Carrizo Citrange Rootstock through overexpression 
of glyoxalase system genes. BioMed  Research  International, 827951. 
https://doi.org/10.1155/2015/827951 
Aragón C. F., Taba S, Hernández J. M., Figueroa J. D. & Serrano V. (2006). 
Actualización de la información sobre los maíces criollos de Oaxaca. 
Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias, 
Informe nal SNIB-CONABIO proyecto No. CS002 México D. F. http://
www.conabio.gob.mx/institucion/proyectos/resultados/InfCS002.pdf
Arteaga M. C., Moreno-Letelier A., Mastretta-Yanes A., Vázquez-Lobo A., 
Breña-Ochoa A., Moreno-Estrada A., Eguiarte L. E. & Piñero D. (2016). 
Genomic variation in recently collected maize landraces from Mexico. 
Genomics Data, 7: 38-45. https://doi.org/10.1016/j.gdata.2015.11.002 
Bandyopadhyay R., Ortega-Beltrán A., Akande A., Mutegi C., Atehnkeng J., 
Kaptoge L., Senghor A. L., Adhikari B. N. & Cotty P. J. (2016). Biological 
control of aatoxins in Africa: current status and potential challenges in 
the face of climate change. World  Mycitoxin  Journal,  9(5): 771-789. 
https://doi.org/10.3920/WMJ2016.2130
Bania I. and Mahanta R. (2012). Evaluation of peroxidases from 
various plant sources. International  Journal  of  Scientic  and 
Research  Publications,  2(5). http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.387.3615&rep=rep1&type=pdf
Baker R. L., Brown R. L., Chen Z. Y., Cleveland T. E. & Fakhoury A. M. 
(2009). A maize lectin-like protein with antifungal activity against 
Aspergillus avus. Journal of food protection, 72(1): 120-127. https://doi.
org/10.4315/0362-028X-72.1.120
Ben M. R., El-Omari R., El-Mourabit N., Bouargalne Y. & NHIRI M. (2018). 
Changes in the antioxidant and glyoxalase enzyme activities in leaves of 
two Moroccan sorghum ecotypes with differential tolerance to nitrogen 
stress.  Australian  Journal  of  Crop  Science,  12(8): 1280-1287. https://
www.cropj.com/mrid_12_8_2018_1280_1287.pdf
Borysiuk K., Ostaszewska-Bugajska M., Vaultier M-N, Hasenfratz-Sauder M-P & 
Szal B. (2018). Enhanced formation of methylglyoxal-derived advanced 
glycation end products in Arabidopsis  under Ammonium Nutrition. 
Frontiers in Plant Science, 9: 667. https://doi.org/10.3389/fpls.2018.00667 
Cabrera T. J. M., Carballo A. & Aragón-Cuevas F. (2015). Evaluación agronómica 
de maíces raza Zapalote chico en la región Istmeña de Oaxaca. Revista 
Mexicana  Ciencias  Agrícolas,  11: 2075-2082. https://doi.org/10.29312/
remexca.v0i11.775
Chen Z. Y., Brown R. L., Damann K. E. & Cleveland T. E. (2004). Identication 
of  a  maize  kernel  stress-related  protein  and  its  effect  on  aatoxin 
accumulation.  Phytopathology,  94(9): 938-945. https://doi.org/10.1094/
PHYTO.2004.94.9.938
Chen, Z.-Y., Brown R. L., Damann K. E. & Cleveland T. E. (2007). Identication 
of maize kernel endosperm proteins associated with resistance to aatoxin 
contamination by Aspergillus avus. Phytopathology, 97(9): 1094–1103. 
https://doi.org/10.1094/PHYTO-97-9-1094
Chomczynski P. and Sacchi N. (1987). Single-step method of RNA isolation 
by acid guanidinium thiocyanate-phenol-chloroform extraction. 
Analytical  Biochemistry,  162(1):156-9.  https://doi.org/10.1016/0003-
2697(87)90021-2 
Fernández S. R., Morales L. A. & A. Gálvez M. (2013). Importancia de los maíces 
nativos de México en la dieta nacional. Una revisión indispensable. 
Revista  Fitotecnia  Mexicana,  36(3-A): 275-283. http://www.scielo.org.
mx/pdf/rfm/v36s3-a/v36s3-aa4.pdf 
Fountain J. C., Chen Z-Y, Scully B. T., Kamerait R. C., Lee R. D. & Guo B. (2010). 
Pathogenesis-related gene expressions in different maize genotypes 
under drought stressed conditions. African Journal Plant Science, 4(11): 
433-440.   https://academicjournals.org/article/article1380126077_
Fountain%20et%20al.pdf
Ghosh A.  (2017).  Genome-wide  identication  of  glyoxalase  genes  in Medicago 
truncatula  and  their  expression  proling  in  response  to  various 
developmental and environmental stimuli. Frontiers in Plant Science, 8: 
836. https://doi.org/10.3389/fpls.2017.00836
Ghosh A., Kushwana H. R., Hasan M. R., Pareek A., Sopory S. K. & Singla-Pareek 
S. L. (2016). Presence of unique glyoxalase III proteins in plants indicates 
the existence of shorter route for methylglyoxal detoxication. Scientic 
Reports, 6:18358. https://doi.org/10.1038/srep18358 
Hasanuzzaman M., Nahar K., Hossain Md. S., Mahmud J. A., Rahman A., Inafuku 
M., Oku H. & Fujita M. (2017a). Coordinated actions of glyoxalase and 
antioxidant defense systems in conferring abiotic stress tolerance in 
plants. International Journal Molecular Sciences, 18(1): 200. https://doi.
org/10.3390/ijms18010200 
Hasanuzzaman M., Nahar K., Hossain Md. S., Anee T. I., Parvin K. & Fujita M. 
(2017b). Nitric oxide pretreatment enhances antioxidant defense and 
glyoxalase systems to confer PEG-induced oxidative stress in rapeseed. 
Journal  of  Plant  Interaction,  12(1): 323-331. https://doi.org/10.1080/17
429145.2017.1362052
Kato Y. T. A., Mapes C., Mera L. M., Serratos J. A. & Bye R. A. (2009). Origen y 
diversicación del maíz; Una revisión analítica. UNAM: México: 115 pp. 
https://issuu.com/perrasdelmal/docs/origen_y_diversif._del_maiz  
Kaur C., Sharma S., Hasan M. R., Pareek A., Singla-Pareek S. L. & Sopory S. 
K. (2017). Characteristic variations and similarities in biochemical, 
molecular and functional Properties of glyoxalases across Prokaryotes and 
Eukaryotes. International Journal of Molecular Sciences, 18:250. https://
doi.org/10.3390/ijms18040250
Li Z-G. (2016). Methylglyoxal and glyoxalase system in plants: old players, new 
concepts.  The  Botanical  Review,  82: 183-203. https://doi.org/10.1007/
s12229-016-9167-9
Rosado O. A. and Villasante S. B. (2021). Los herederos del maíz. Instituto 
Nacional de los Pueblos Indígenas, Ciudad de México. https://www.gob.
mx/cms/uploads/attachment/le/658352/Libro-Los-herederos-del-maiz-
INPI.pdf 
Martínez P. H. Y., Hernández S., Reyes C. A. & Vázquez-Carrillo G. (2013). El 
género Aspergillus y sus micotoxinas de maíz en México: problemática y 
perspectivas. Revista Mexicana de Fitopatología, 31(2): 126-146. http://
www.scielo.org.mx/pdf/rm/v31n2/v31n2a5.pdf 
Orozco-Ramírez Q., Ross-Ibarra J., Santacruz-Varela A. & Brush S. (2016). Maize 
diversity associated with social origin and environmental variation in 
Southern Mexico. Heredity,  116(5): 477-484. https://doi.org/10.1038/
hdy.2016.10
Rajasekaran K., Sayler R. J., Majumdar R., Sickler C. M. & Cary J. W. (2019). 
Inhibition of Aspergillus  avus  growth  and  aatoxin  production  in 
transgenic  maize  expressing  the  α-amylase  inhibitor  from  Lablab 
purpureus  L.  Journal  of  Visualized  Experiments,  144. https://doi.
org/10.3791/59169
Rohman Md. M., Talukder M. Z. A., Hossain M. G., Uddin M. S., Amiruzzaman 
M., Biswas A., Ahsan A. F. M. & Chowdhury M. A. Z. (2016). Saline 
sensitivity leads to oxidative stress and increases the antioxidants in