This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Brito-Campo et al. Rev. Fac. Agron. (LUZ). 2022, 39(2): e2239326-6 |
Acknowledgments
To Grupo de Investigación Microbiología Agrícola y Ambiental 
(MAGYA) of the Universidad Popular del Cesar from Colombia 
and the Servicio Nacional de Aprendizaje (SENA) La Salada Caldas 
- Antioquia, Colombia for the support in the development of this 
research. 
Literature cited
Acuña, A., Pucci, G.N. and Pucci, O.H. (2010). Caracterización de tres cepas 
bacterianas  capaces  de  jar  nitrógeno  y  biodegradar  hidrocarburos 
aisladas de un suelo de la Patagonia. Ecosistemas, 19(2), 125-136. https://
revistaecosistemas.net/index.php/ ecosistemas/article/view/392
Ansari, F. A., Ahmad, I. and Pichtel, J. (2019). Growth stimulation and alleviation 
of salinity stress to wheat by the biolm forming Bacillus pumilus strain 
FAB10.  Applied Soil Ecology, 143, 45-54. https://doi.org/10.1016/j.
apsoil.2019.05.023
Araújo, W. L., Marcon, J., Maccheroni Jr, W., Van Elsas, J. D., Van Vuurde, J. W. 
and Azevedo, J. L. (2002). Diversity of endophytic bacterial populations 
and their interaction with Xylella fastidiosa in citrus plants. Applied and 
Environmental Microbiology, 68(10), 4906-4914. https://journals.asm.
org/doi/10.1128/AEM.68.10.4906-4914.2002
Castagno, L. N., Estrella, M. J., Sannazzaro, A. I., Grassano, A. E. and Ruiz, O. 
A. (2011). Phosphate solubilization mechanism and in vitro plant growth 
promotion activity mediated by Pantoea  eucalypti isolated from Lotus 
tenuis rhizosphere in the Salado River Basin (Argentina). Journal of 
Applied Microbiology, 110(5), 1151-1165. https://doi.org/10.1111/j.1365-
2672.2011.04968.x
Corrales-Ramírez, L., Caycedo-Lozano, L., Gómez-Méndez, M., Ramos-Rojas, 
S. and Rodríguez-Torres, J. (2017). Bacillus sp.: una alternativa para la 
promoción vegetal por dos caminos enzimáticos. NOVA, 15(27), 45 - 65. 
https://doi.org/10.22490/24629448.1958
Cubillos-Hinojosa, J. G., Valero, N. O. and Melgarejo, L. M. (2015). Assessment 
of a low rank coal inoculated with coal solubilizing bacteria as an organic 
amendment for a saline-sodic soil. Chemical and Biological Technologies 
in Agriculture, 2(1), 1-10. https://doi.org/10.1186/s40538-015-0048-y
De-Bashan, L. E., Hernandez, J. P., Bashan, Y. and Maier, R. M. (2010). Bacillus 
pumilus ES4: candidate plant growth-promoting bacterium to enhance 
establishment of plants in mine tailings. Environmental and Experimental 
Botany, 69(3), 343-352. https://doi.org/10.1016/j.envexpbot.2010.04.014
Dobereiner, J., Marriel, I. E. and Nery, M. (1976). Ecological distribution of 
Spirillum lipoferum Beijerinck. Canadian Journal of Microbiology, 
22(10), 1464-1473. https://doi.org/10.1139/m76-217
Glick, B. R. (2012). Plant growth-promoting bacteria: mechanisms and applications. 
Scientica, 2012, Article 96340. https://doi.org/10.6064/2012/963401
Hardy, R. W., Holsten, R. D., Jackson, E. K., & Burns, R. (1968). The acetylene-
ethylene  assay  for  N2  xation:  laboratory  and  eld  evaluation.  Plant 
Physiology, 43(8), 1185-1207.
Idris, E. E., Iglesias, D. J., Talon, M., and Borriss, R. (2007). Tryptophan-
dependent production of indole-3-acetic acid (IAA) affects level of plant 
growth promotion by Bacillus amyloliquefaciens FZB42. Molecular 
Plant-Microbe Interactions, 20(6), 619-626. https://doi.org/10.1094/
MPMI-20-6-0619
Kloepper, J. W., Lifshitz, R. and Zablotowicz, R. M. (1989). Free-living bacterial 
inocula for enhancing crop productivity. Trends in Biotechnology, 7(2), 
39-44. https://doi.org/10.1016/0167-7799(89)90057-7
Kumari, P., Meena, M. and Upadhyay, R. S. (2018). Characterization of plant 
growth promoting rhizobacteria (PGPR) isolated from the rhizosphere of 
Vigna radiata (mung bean). Biocatalysis and Agricultural Biotechnology, 
16, 155-162. https://doi.org/10.1016/j.bcab.2018.07.029
Lalloo, R., Maharajh, D., Görgens, J., Gardiner, N. and Görgens, J. F. (2009). 
High-density spore production of a B. cereus aquaculture biological agent 
by nutrient supplementation. Applied microbiology and biotechnology, 
83(1), 59-66. https://doi.org/10.1007/s00253-008-1845-z
Meena, M., Swapnil, P., Divyanshu, K., Kumar, S., Tripathi, Y. N., Zehra, A., 
Marwal, A. and Upadhyay, R. S. (2020). PGPR-mediated induction of 
systemic resistance and physiochemical alterations in plants against the 
pathogens: Current perspectives. Journal of Basic Microbiology, 60(10), 
828-861. https://doi.org/10.1002/jobm.202000370
Mirza, B. S., and Rodrigues, J. L. (2012). Development of a direct isolation 
procedure for free-living diazotrophs under controlled hypoxic conditions. 
Applied and Environmental Microbiology, 78(16), 5542-5549. https://doi.
org/10.1128/AEM.00714-12
Naveed, M., Qureshi, M. A., Zahir, Z. A., Hussain, M. B., Sessitsch, A., and Mitter, 
B. (2015). L-Tryptophan-dependent biosynthesis of indole-3-acetic acid 
(IAA) improves plant growth and colonization of maize by Burkholderia 
phytormans PsJN. Annals of Microbiology, 65(3), 1381-1389. https://
doi.org/10.1007/s13213-014-0976-y
Pantoja-Guerra, M., Ramirez-Pisco, R. and Valero-Valero, N. (2019). Improvement 
of mining soil properties through the use of a new bio-conditioner 
prototype: a greenhouse trial. Journal of Soils and Sediments, 19(4), 
1850-1865. https://doi.org/10.1007/s11368-018-2206-x
Pérez, A. and Chamorro, L. (2013). Bacterias  endótas:  un  nuevo  campo 
de investigación para el desarrollo del sector agropecuario. Revista 
Colombiana de Ciencia Animal, 5(2), 439-462. https://doi.org/10.24188/
recia.v5.n2.2013.457 
Ramírez, L.C.C., Galvez, Z.Y.A. and Burbano, V.E.M. (2014). Solubilización 
de fosfatos: una función microbiana importante en el desarrollo vegetal. 
Nova, 12(21). https://doi.org/10.22490/24629448.997 
Ren, J. H., Li, H., Wang, Y. F., Ye, J. R., Yan, A. Q., and Wu, X. Q. (2013). 
Biocontrol potential of an endophytic Bacillus pumilus JK-SX001 
against poplar canker. Biological Control, 67(3), 421-430. https://doi.
org/10.1016/j.biocontrol.2013.09.012
Spaepen, S., Bossuyt, S., Engelen, K., Marchal, K., and Vanderleyden, J. (2014). 
Phenotypical and molecular responses of Arabidopsis thaliana roots as 
a result of inoculation with the auxin-producing bacterium Azospirillum 
brasilense.  New Phytologist, 201(3), 850-861. https://doi.org/10.1111/
nph.12590
Tejera-Hernández, B., Rojas-Badía, M. M. and Heydrich-Pérez, M. (2011). 
Potencialidades del género Bacillus en la promoción del crecimiento 
vegetal  y  el  control  biológico  de  hongos  topatógenos.  Revista 
CENIC.  Ciencias Biológicas, 42(3), 131-138. https://www.redalyc.org/
pdf/1812/181222321004.pdf
Tejera-Hernández, B., Heydrich-Pérez, M. and Rojas-Badía, M. M. (2013). 
Aislamiento de Bacillus solubilizadores de fosfatos asociados al cultivo del 
arroz.  Agronomía Mesoamericana, 24(2), 357-364. https://www.scielo.
sa.cr/scielo.php?script=sci_arttext&pid=S1659-13212013000200012
Titilawo, Y., Masudi, W. L., Olawale, J. T., Sekhohola-Dlamini, L. M. and Cowan, 
A. K. (2020). Coal-Degrading Bacteria Display Characteristics Typical of 
Plant Growth Promoting Rhizobacteria. Processes, 8(9), 1111. https://doi.
org/10.3390/pr8091111
Valero, N.V., Salazar, L.N., Gómez, S.M., and Bayona L.C. (2012). Obtención 
de bacterias biotransformadoras de carbón de bajo rango a partir de 
microhábitats con presencia de residuos carbonosos. Acta Biológica 
Colombiana, 17(2), 335-347. http://www.scielo.org.co/scielo.
php?script=sci_arttext&pid=S0120-548X2012000200009
Valero, N., Gómez, L., Pantoja, M. and Ramírez, R. (2014). Production of humic 
substances through coal-solubilizing bacteria. Brazilian Journal of 
microbiology, 45(3), 911-918. https://www.scielo.br/j/bjm/a/4q4nM5DZ
ZXMTdhBBKMCVJLP/?format=pdf&lang=en
Valero, N., Melgarejo, L. M. and Ramírez, R. (2016). Effect of low-rank coal 
inoculated with coal solubilizing bacteria on edaphic materials used 
in post-coal-mining land reclamation: a greenhouse trial. Chemical 
and Biological Technologies in Agriculture, 3(1), 1-10. https://doi.
org/10.1186/s40538-016-0068-2
Valero, N. O., Salgado, J. A. and Bastidas, M. J. (2018). Carbones de bajo 
rango como recurso para enmiendas húmicas mediante transformación 
microbiana.  Información tecnológica,  29(5),  315-324.  http://dx.doi.
org/10.4067/S0718-07642018000500315