This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
    Rev. Fac. Agron. (LUZ). 2022, 39(1): e223909. January - March. ISSN 2477-9407.
6-6 |
the  rest  of  the  variables  for  not  providing  relevant  classicatory 
information. It is recommended to apply this multivariate statistical 
model with a greater diversity of sgRNAs, to obtain other 
discriminant functions or to corroborate the weight of the function 
predicted here.
Conclusions
Optimal  sgRNAs  could  be  designed  and  identied  using 
bioinformatic tools based on structural, thermodynamic and 
functional  characteristics.  The  methods  used  to  improve  the 
efciency  of sgRNAs point to sgRNA-F3 and sgRNA-C3 as  the 
molecules with the  most optimal characteristics  for the knockout 
of Fus3 and CYP51 in P. jiensis. Likewise, the number of possible 
conformations has an important predictive weight to  differentiate 
between suitable sgRNAs for P. jiensis. These  results,  although 
preliminary and require more studies, are promising because they 
show  the  possibility  of  using  non-toxic  alternatives  for  genetic 
improvement,  and  specic  control  of  plant  diseases,  as  more 
research is carried out.
Cited literature
Bartkowski, B., Theesfeld, I., Pirscher, F., & Timaeus, J. (2018). Snipping around 
for  food:  economic,  ethical  and  policy  implications  of  CRISPR/Cas 
genome editing. Geoforum, 96(1), 172-180. https://doi.org/10.1016/j.
geoforum.2018.07.017
Belhaj,  K.,  Chaparro-Garcia,  A.,  Kamoun,  S.,  Patron,  N.  J.,  &  Nekrasov, 
V. (2015). Editing  plant  genomes  with  CRISPR/Cas9.  Current 
opinion  in  biotechnology,  32(1), 76-84. https://doi.org/10.1016/j.
copbio.2014.11.007 
Campenhout, C. V., Cabochette, P., Veillard, A. C., Laczik, M., Zelisko-Schmidt, 
A., Sabatel, C., ... & Kruys, V. (2019). Guidelines for optimized gene 
knockout using CRISPR/Cas9. BioTechniques, 66(6), 295-302. https://
doi.org/10.2144/btn-2018-0187 
Chong, P., Vichou, A. E., Schouten, H. J., Meijer, H. J., Arango Isaza, R. E., 
&  Kema,  G.  H.  (2019).  Pfcyp51  exclusively  determines  reduced 
sensitivity to 14α-demethylase inhibitor fungicides in the banana black 
Sigatoka  pathogen  Pseudocercospora  jiensis.  PLOS ONE, 14(10), 
Article e0223858. https://doi.org/10.1371/journal.pone.0223858  
Díaz-Trujillo,  C.,  Kobayashi,  A.  K.,  Souza,  M.,  Chong,  P.,  Meijer,  H.  J., 
Isaza, R. E. A., & Kema, G. H. (2018). Targeted and random genetic 
modication of the black Sigatoka pathogen Pseudocercospora jiensis 
by  Agrobacterium  tumefaciens-mediated transformation. Journal  of 
microbiological  methods,  148(1), 127-137. https://doi.org/10.1016/j.
mimet.2018.03.017 
Dupuis, N. F., Holmstrom, E. D., & Nesbitt, D. J. (2014). Molecular-crowding 
effects on single-molecule RNA folding/unfolding thermodynamics and 
kinetics.  Proceedings  of  the National  Academy  of  Sciences,  111(23), 
8464-8469. https://doi.org/10.1073/pnas.1316039111 
Escobar-Tovar,  L.,  Magaña-Ortíz,  D.,  Fernández,  F.,  Guzmán-Quesada,  M., 
Sandoval-Fernández, J. A., Ortíz-Vázquez,  E., ...  & Gómez-Lim, M. 
A.  (2015).  Efcient  transformation  of  Mycosphaerella  jiensis by 
underwater shock waves. Journal of microbiological methods, 119(1), 
98-105. https://doi.org/10.1016/j.mimet.2015.10.006   
Estrela,  R.,  & Cate, J.  H.  D.  (2016).  Energy biotechnology in the CRISPR-
Cas9 era. Current opinion  in  biotechnology,  38(1), 79-84. https://doi.
org/10.1016/j.copbio.2016.01.005 
George, D., & Mallery, P. (2016). An Overview of IBM SPSS Statistics. IBM 
SPSS Statistics 23 Step by Step (14 Edition) Routledge. 
Jiang, D., Zhu, W., Wang, Y., Sun, C., Zhang, K. Q., & Yang, J. (2013). Molecular 
tools for functional genomics in lamentous fungi: recent advances and 
new strategies. Biotechnology advances, 31(8), 1562-1574. https://doi.
org/10.1016/j.biotechadv.2013.08.005  
Knight, S. C., Xie, L., Deng, W., Guglielmi, B., Witkowsky, L. B., Bosanac, L., 
... & Tjian, R. (2015). Dynamics of CRISPR-Cas9 genome interrogation 
in living cells. Science,  350(6262), 823-826. https://doi.org/10.1126/
science.aac6572  
Kocak,  D. D., Josephs,  E. A.,  Bhandarkar, V., Adkar, S. S.,  Kwon,  J. B., & 
Gersbach, C. A. (2019). Increasing the specicity of CRISPR systems 
with engineered RNA secondary structures. Nature  biotechnology, 
37(6), 657-666. https://doi.org/10.1038/s41587-019-0095-1
  
Koch, A., Kumar, N., Weber, L., Keller, H., Imani, J., & Kogel, K. H. (2013). 
Host-induced  gene  silencing  of  cytochrome  P450  lanosterol  C14α-
demethylase–encoding genes confers strong resistance to Fusarium 
species.  Proceedings  of  the  National  Academy  of  Sciences,  110(48), 
19324-19329. https://doi.org/10.1073/pnas.1306373110   
Kuan, P. F., Powers, S., He, S., Li, K., Zhao, X., & Huang, B. (2017). A systematic 
evaluation of nucleotide properties  for CRISPR  sgRNA design.  Bmc 
Bioinformatics, 18(1), 1-9. https://doi.org/10.1186/s12859-017-1697-6  
Li, J., Sun, Y., Du, J., Zhao, Y., & Xia, L. (2017). Generation of targeted point 
mutations in rice by a modied CRISPR/Cas9 system. Molecular plant, 
10(3), 526-529. http://dx.doi.org/10.1111/pbi.12611  
Liang, X., Potter, J., Kumar, S., Ravinder, N., & Chesnut, J. D. (2017). Enhanced 
CRISPR/Cas9-mediated  precise  genome  editing  by  improved 
design and delivery of gRNA, Cas9 nuclease, and donor DNA. 
Journal  of  biotechnology,  241(1), 136-146. https://doi.org/10.1016/j.
jbiotec.2016.11.011  
Ma, B., & Tredway, L. P. (2013). Induced overexpression of cytochrome P450 
sterol 14 α‐demethylase gene (CYP51) correlates with sensitivity to 
demethylation inhibitors (DMIs) in Sclerotinia  homoeocarpa.  Pest 
management  science,  69(12), 1369-1378. https://doi.org/10.1002/
ps.3513  
Mumbanza, F. M., Kiggundu, A., Tusiime, G., Tushemereirwe, W. K., Niblett, 
C., & Bailey, A. (2013). In vitro antifungal activity of synthetic dsRNA 
molecules  against two  pathogens  of  banana, Fusarium  oxysporum f. 
sp.  cubense and Mycosphaerella  jiensis.  Pest  management  science, 
69(10), 1155-1162. https://doi.org/10.1002/ps.3480 
Onyilo, F., Tusiime, G., Tripathi, J.  N., Chen, L. H., Falk,  B., Stergiopoulos, 
I., ... & Tripathi, L. (2018). Silencing of the mitogen-activated protein 
kinases (MAPK) Fus3 and Slt2 in Pseudocercospora jiensis reduces 
growth and virulence on host plants. Frontiers in plant science, 9(291), 
1-12. https://doi.org/10.3389/fpls.2018.00291  
Podust,  L.  M.,  Poulos,  T.  L.,  &  Waterman,  M.  R.  (2001).  Crystal  structure 
of  cytochrome  P450  14α-sterol  demethylase  (CYP51)  from 
Mycobacterium  tuberculosis  in  complex  with  azole  inhibitors. 
Proceedings  of  the  National Academy of Sciences, 98(6), 3068-3073. 
https://doi.org/10.1073/pnas.061562898 
Regan, K., Dotterweich, R., Ricketts, S., & Robertson-Anderson, R. M. (2018). 
Diffusion and conformational dynamics of single DNA molecules 
crowded by  cytoskeletal proteins. Journal  of Undergraduate Reports 
in Physics, 28(1), 100001-100005. https://doi.org/10.1063/1.5109559 
Ren,  X.,  Yang,  Z.,  Xu,  J.,  Sun,  J.,  Mao,  D.,  Hu,  Y.,  ...  &  Ni,  J.  Q.  (2014). 
Enhanced specicity and efciency of the CRISPR/Cas9 system with 
optimized sgRNA parameters in Drosophila. Cell reports, 9(3), 1151-
1162. https://doi.org/10.1016/j.celrep.2014.09.044  
Scott, D. A., & Zhang, F. (2017). Implications of human genetic variation in 
CRISPR-based  therapeutic  genome  editing.  Nature  medicine,  23(9), 
1095–1101. https://doi.org/10.1038/nm.4377  
Tripathi, J. N., Ntui, V. O., Ron, M., Muiruri, S. K., Britt, A., & Tripathi, L. 
(2019).  CRISPR/Cas9 editing of  endogenous  banana  streak  virus in 
the B genome of Musa spp.  overcomes a major challenge  in banana 
breeding. Communications biology, 2(1), 1-11. https://doi.org/10.1038/
s42003-019-0288-7  
Xu,  J.  R.  (2000).  MAP  kinases  in  fungal  pathogens.  Fungal  Genetics  and 
Biology, 31(3), 137-152. https://doi.org/10.1006/fgbi.2000.1237   
Zaynab, M., Sharif, Y., Fatima, M., Afzal, M. Z., Aslam, M. M., Raza, M. F., 
... & Li, S. (2020). CRISPR/Cas9 to generate plant immunity against 
pathogen. Microbial pathogenesis, 141(1), Article 103996. https://doi.
org/10.1016/j.micpath.2020.103996  
Zhang, X. H., Tee, L. Y., Wang, X.  G., Huang,  Q. S., & Yang, S. H. (2015). 
Off-target  effects  in  CRISPR/Cas9-mediated  genome  engineering. 
Molecular  Therapy-Nucleic  Acids,  4, Article e264. https://doi.
org/10.1038/mtna.2015.37