This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
Mendoza et al. Rev. Fac. Agron. (LUZ). 2022, 39(1): e223908
5-6 |
The growth results of Trichoderma spp. on 
carboxymethylcellulose and birch xylan demonstrate the potential 
of these fungal strains for the production of cellulases and 
xylanases, this fungal genus has been recognized for its ability to 
produce this type of enzymes extracellularly (Rahnama et al., 2013; 
Zhang et  al., 2018). For this reason, the sugarcane straw and the 
fungal strain can be used for the design of a rational process for the 
production of hydrolytic enzymes, where the sugarcane straw can 
serve as a substrate and the fungal biomass can be the inoculum 
for the production of said enzymes (Farinas, 2015; Florencio et 
al., 2015), thus developing an integral process for the use of straw 
and native strains. It is very important to highlight that Marques 
et  al. (2018) published that an endophytic strain of Trichoderma 
viridae presented an enzymatic activity of cellulase of 64 Ug
-1
 and 
xylanase of 351 Ug
-1
 in solid culture using cane bagasse as support, 
reafrming the possibility of designing a process for the production 
of hydrolytic enzymes.
Likewise, investigations in corn harvest remains, indicate that 
Fusarium oxysporum (Panagiotou et al., 2003), as well as, in forest 
waste Aspergillus niger and F. oxysporum (Kaushal et al., 2012), 
have the ability to produce enzymes extracellular hydrolytics. 
Therefore, the strains of Fusarium spp. isolated in the present 
work, as well as sugarcane straw can be explored for the design of 
a process for the production of hydrolytic enzymes in solid culture, 
since they showed the growth capacity on carboxymethylcellulose 
and birch xylan. In addition, there are reports that indicate that 
hydrolytic enzymes can  be produced efciently using co-cultures 
of Fusarium oxysporum with Aspergillus niger, the second was also 
present in the sugarcane straw evaluated (Romão-Dumaresq et al., 
2016).
Finally, it is important to mention that the isolated strains with 
morphological characteristics corresponding to Penicillum spp., 
Showed growth on carboxymethylcellulose and birch xylan, so 
it can also be explored for the production/design of hydrolytic 
enzymes, this species has been reported as part of the sugarcane 
rhizosphere (Romão-Dumaresq et al., 2016) and also as a producer 
of hydrolytic enzymes (Camassola and Dillon, 2010; Gong 
et  al., 2015). However, for strains with the ability to produce 
hydrolysis halo in plates with culture medium supplemented with 
carboxymethylcellulose and birch xylan, as the only carbon source, 
additional studies are required in solid culture where the enzymatic 
activity is quantied and thus, know the real potential of the strains.
Conclusions
The sugar cane straw align favors that the organic matter content 
does  not  have signicant  variations  in soils  where  sugar  cane  is 
grown.  While the  fungal  microbiota  isolated  from the  sugarcane 
straw was Trichoderma spp., Fusarium spp., Penicillum spp. and 
Aspergillus spp. Furthermore, three of the four isolated fungal 
strains showed potential to grow using carboxymethylcellulose and 
birch xylan as the sole carbon source indicative of their potential to 
produce extracellular hydrolytic enzymes.
Acknowledgment
Mendoza-Infante N. Grace appreciates the scholarship granted 
by CONACyT for Master’s studies.
Literature cited
Adesina,  F.  &  Onilude, A.  (2013).  Isolation,  identication  and  screening  of 
xylanase and glucanase-producing microfungi from degrading wood in 
Nigeria. African Journal of Agricultural Research, 8(34), 4414-4421. 
https://cutt.ly/Inh57Dh 
Agudelo, J, Merchán, Z., Zapata, N., y Muñoz, O. (2013). Evaluación de 
las enzimas celulolíticas producidas por hongos nativos mediante 
fermentación en estado sólido (SSF) utilizando residuos de cosecha de 
caña de azúcar. Revista Colombiana de Biotecnología, 15(1), 108-117. 
https://cutt.ly/2nh54yM 
Armanhi, J., de Souza, R., Damasceno, N., de Araújo, L., Imperial, J. & Arruda, P. 
(2018). A community-based culture collection for targeting novel plant 
growth-promoting bacteria from the sugarcane microbiome. Frontiers 
in Plant Science, 8, 2191. https://doi.org/10.3389/fpls.2017.02191 
Barnett, H. & Hunter, B. (1972). Illustrated genera of imperfect fungi. Illustrated 
genera of imperfect fungi (3rd ed). Burges Publishing Company. 
Batista-García,  R.,  Balcázar-López,  E.,  Miranda-Miranda,  E.,  Sánchez-
Reyes, A., Cuervo-Soto, L., Aceves-Zamudio, D. & Folch-Mallol, 
J. (2014). Characterization of lignocellulolytic activities from a 
moderate halophile strain of Aspergillus  caesiellus isolated from a 
sugarcane bagasse fermentation. PLoS One, 9(8), e105893. https://doi.
org/10.1371/journal.pone.0105893 
Bertonha, L., Neto, M., Garcia, J., Vieira, T., Castoldi, R., Bracht, A. & Peralta, R. 
(2018). Screening of Fusarium sp. for xylan and cellulose hydrolyzing 
enzymes  and  perspectives  for  the  saccharication  of  delignied 
sugarcane bagasse. Biocatalysis  and Agricultural  Biotechnology,  16, 
385-389. https://doi.org/10.1016/j.bcab.2018.09.010 
Borges,  J.,  Barrios,  M.,  Sandoval,  E.,  Bastardo,  Y.  &  Márquez,  O.  (2012). 
Características físico-químicas del suelo y su asociación con 
macroelementos en áreas destinadas a pastoreo en el estado Yaracuy. 
Bioagro, 24(2), 121-126. https://cutt.ly/jnh53mK 
Bojórquez-Serrano,  J.,  Castillo  Pacheco,  L.,  Hernández  Jiménez, A.,  García 
Paredes, J. & Madueño-Molina, A. (2015). Cambios en las reservas 
de carbono orgánico del suelo bajo diferentes coberturas. Cultivos 
Tropicales, 36(4), 63-69. https://cutt.ly/jnh59Yk 
Camassola, M. & Dillon, A. (2010). Cellulases and xylanases production by 
Penicillium  echinulatum grown on sugar cane bagasse in solid-state 
fermentation. Applied Biochemistry and Biotechnology, 162(7), 1889-
1900. https://doi.org/10.1007/s12010-010-8967-3 
Cervantes-Preciado, J., Milanés-Ramos, N. & Castillo, M. (2019). Evaluación 
de 11 híbridos de caña de azúcar (Saccharum spp.) en la region central 
de Veracruz, México. AGROProductividad,  12(3), 69-74. https://doi.
org/10.32854/agrop.v0i0.1085 
Comité Nacional para el desarrollo sustentable de la caña de azúcar 
(CONADESUCA). 2019. Comparativo de días de zafra respecto al 
primer estimado de los ingenios, Ciudad de México: Comité Nacional 
para el Desarrollo Sustentable de la Caña de Azúcar. Fecha de consulta: 
agosto 2020.
Dela-Cueva,  F.,  De Torres,  R., de  Castro, A.,  Mendoza,  J. &  Balendres,  M. 
(2019). Susceptibility of sugarcane to red rot caused by two Fusarium 
species and its impact on stalk sugar level. Journal of Plant Pathology, 
101(3). https://doi.org/10.1007/s42161-019-00253-2 
Dhakar, K., Sharma, A. & Pandey, A. (2014). Cold, pH and salt tolerant 
Penicillium spp. inhabit the high altitude soils in Himalaya, India. 
World Journal of Microbiology and Biotechnology, 30(4), 1315-1324. 
https://doi.org/10.1007/s11274-013-1545-4 
De Souza, R., Okura, V., Armanhi, J., Jorrín, B., Lozano, N., Da Silva, M. & 
Arruda, P. (2016). Unlocking the bacterial and fungal communities 
assemblages of sugarcane microbiome. Scientic Reports,  6(1), 1-15. 
https://doi.org/10.1038/srep28774 
Deshmukh, R., Dange, S., Jadhav, P., Deokule, S. & Patil, N. (2013). Studies on 
the mycoora in the rhizosphere of sugarcane (Saccharum ofcinarum 
L.). International  Journal  of Bioassays, 2(4), 674-676. https://cutt.ly/
enh50ew 
Elias, F., Woyessa, D. & Muleta, D. (2016). Phosphate solubilization potential 
of rhizosphere fungi isolated from plants in Jimma Zone, Southwest 
Ethiopia.  International  Journal  of  Microbiology,  2016, 1-11. https://
doi.org/10.1155/2016/5472601 
Farinas, C. (2015). Developments in solid-state fermentation for the production 
of biomass-degrading enzymes for the bioenergy sector. Renewable and 
Sustainable  Energy  Reviews,  52, 179-188. https://doi.org/10.1016/j.
rser.2015.07.092 
Florencio, C., Couri, S. & Farinas, C. (2012). Correlation between agar plate 
screening and solid-state fermentation for the prediction of cellulase 
production by Trichoderma strains. Enzyme research, 2012. https://doi.
org/10.1155/2012/793708 
Florencio, C., Cunha, F., Badino, A. & Farinas, C. (2015). Validation of a novel 
sequential cultivation method for the production of enzymatic cocktails 
from 
Trichoderma  strains.  Applied  Biochemistry  and  Biotechnology, 
175(3), 1389-1402. https://doi.org/10.1007/s12010-014-1357-5 
Gong, W., Zhang, H., Liu, S., Zhang, L., Gao, P., Chen, G. & Wang, L. (2015). 
Comparative secretome analysis of Aspergillus  niger,  Trichoderma 
reesei, and Penicillium  oxalicum during solid-state fermentation.