
This scientic publication in digital format is a continuation of the Printed Review: Legal Deposit pp 196802ZU42, ISSN 0378-7818.
    Rev. Fac. Agron. (LUZ). 2022, 39(1): e223904. January - March. ISSN 2477-9407.
4-5 |
and Zapata et al. (2019). In addition, it  can be observed that the 
hydrolyzate  prepared  with  a  pH  of  6.33  had  a  higher  hydrolysis 
approach, generating a reduction in concentration, which indicates 
that the hydrolysis with this treatment was more effective.
Table 4. Protein concentration and hydrolysis approximation.
pH Protein concentration
mg.mL
-1
Hydrolysis approximation 
(%)
5.32 2.38 ± 0.12
a
46 ± 2.50
a
5.94 2.64 ± 0.20
a
40 ± 4.40
a
6.33 1.22 ± 0.14
b
72 ± 3.10
b
a,  b
Different  letters symbolize  statistically  signicant  differences (p  <0.05). 
The data represent the mean ± SD
Amino acid composition
The results of the composition of essential amino acids (EAA) 
of the enzymatic hydrolyzate using the soluble sh as raw material 
for  its  elaboration  are  shown  in  table  5.  It  can  be  seen  that  the 
hydrolyzate  using  the  Granozyme  ACC®  enzyme  had  a  lower 
EAA composition than that obtained by Bhaskar et al. (2008) and 
Ovissipour et al. (2012). These results are as expected, because these 
studies have used viscera or blood that contain a higher percentage 
of protein to obtain the hydrolyzate. However, the composition of 
amino acids obtained meets all the nutritional requirements of EAA 
of  the  marine  species  Marsupenaeus japonicus  (Teshima  et al., 
2002), which is a promising result for the use of this type of by-
products in the supplement industry. nutritional.
Table 5. Essential amino acid composition of the hydrolyzate.
EAA
Hidrolizated
g.100g
-1
Bhaskar 
et al. 
(2008)
g.100g
-1
Ovissipour et 
al. (2012)
g.100g
-1
EAA request 
(Marsupenaeus 
japonicus)
g.100g
-1
Arginine 1.80 10.82 8.81 1.40-1.80
Histidine 2.32 2.06 8.45 0.50-0.70
Isoleucine 1.40 3.6 6.93 1.10-1.40
Lisine 1.92 7.07 1.87 1.70-2.00
Methionine
Phenylalanine
Threonine
Valine
1.36
1.36
1.52
1.53
2.02
3.53
4.02
4.79
1.48
3.85
5.9
8.93
0.60-0.80
1.30-1.60
1.10-1.40
1.20-1.50
EAA: essential amino acids; sample number: 25
Conclusions
The  enzymatic  hydrolysis  of  the  soluble  sh  had  a  better 
performance at a pH of 6.33; With the implementation of this value, 
the performance in obtaining large amounts of protein with this by-
product as raw material could be improved, generating added value 
to it.
Soluble sh has proven to be a promising source of nutritional 
supplements for marine species to take advantage of a by-product 
that would otherwise be discarded causing environmental pollution. 
However, future studies in various marine species are necessary to 
determine its efcacy as a food additive or animal nutrition.
Cited literature
Association  of  ofcial  analytical  chemists  - AOAC.  2005.  Determination  of 
Moisture, Ash,  Protein  and  Fat.  Ofcial  Method  of  Analysis  of  the 
Association of Analytical Chemists. 18th Ed, Washington DC.
Babazadeh,  M.,  Soltani,  M.,  Soltani,  A.  & Asl,  M.S.  (2014).  Production  of 
single  cell  protein  from  Stickwater  of  kilka  sh  meal  factory  using 
Lactobacillus plantarum and  Bacillus licheniformis. WALIA Journal, 
30(S3), 96–101. https://cutt.ly/jQOKIk8 
Baez-Suarez, A.J., Ospina-de-Barreneche, N.  y Zapata-Montoya,  J.E. (2016). 
Efecto de temperatura, pH, concentración de sustrato y tipo de enzima en 
la hidrólisis enzimática de vísceras de Tilapia Roja (Oreochromis spp.). 
Información Tecnológica, 27(6),  63–76.  http://dx.doi.org/10.4067/
S0718-07642016000600007
Bhaskar,  N.,  Benila,  T.,  Radha,  C.  &  Lalitha,  R.G.  (2008).  Optimization 
of  enzymatic  hydrolysis  of  visceral  waste  proteins  of  Catla  (Catla 
catla) for preparing protein hydrolysate using a commercial protease. 
Bioresource Technology,  99(2),  335–343.  https://doi.org/10.1016/j.
biortech.2006.12.015 
Bradford, M.M.  (1976). A rapid  and sensitive  method for  the quantitation of 
microgram  quantities  of  protein  utilizing  the  principle  of  protein-
dye  binding.  Analytical Biochemistry,  72(1–2),  248–254.  https://doi.
org/10.1016/0003-2697(76)90527-3 
Granotec. (2017). Granozyme ACC®. Nutrición y Biotecnología para la salud. 
Guayaquil. Ecuador. https://www.granotec.com.ec/ 
Han, D., Shan, X., Zhang, W., Chen, Y., Wang, Q., Li, Z. & Mai, K. (2018). 
A  revisit  to  shmeal usage and  associated  consequences  in  Chinese 
aquaculture.  Reviews in Aquaculture,  10(2),  493-507.  https://doi.
org/10.1111/raq.12183 
IBM Corp.  Released 2015.  IBM SPSS Statistics  for Windows, Version 23.0. 
Armonk, NY: IBM Corp.
Instituto  ecuatoriano  de  normalización  –  INEN.  1980a.  Norma  técnica 
ecuatoriana NTE INEN 0466: Harina de pescado. Determinación de la 
materia grasa. https://cutt.ly/bQOK0Xe 
Instituto  ecuatoriano  de  normalización  –  INEN.  1980b.  Norma  técnica 
ecuatoriana NTE INEN 0467: Harina de pescado. Determinación de las 
cenizas. https://cutt.ly/SQOK3GZ 
Jannathulla,  R.,  Rajaram,  V.,  Kalanjiam,  R.,  Ambasankar,  K.,  Muralidhar, 
M.  &  Dayal,  J.S.  (2019).  Fishmeal  availability  in  the  scenarios  of 
climate change: Inevitability of shmeal replacement in aquafeeds and 
approaches  for  the  utilization  of  plant  protein  sources.  Aquaculture 
Research, 50(12), 3493-3506. https://doi.org/10.1111/are.14324 
Li,  X., Dong,  S., Zhang, W., Fan,  X., Wang, R.,  Wang,  P. & Su,  X. (2019). 
The occurrence of peruoroalkyl  acids in an  important feed material 
(shmeal) and  its potential  risk through the farm-to-fork  pathway to 
humans.  Journal  of  Hazardous  Materials,  367,  559-567.  https://doi.
org/10.1016/j.jhazmat.2018.12.103 
Mahdabi, M. & Hosseini-Shekarabi, S.P. (2018). A Comparative Study on Some 
Functional  and Antioxidant  Properties  of Kilka  Meat, Fishmeal, and 
Stickwater  Protein  Hydrolysates.  Journal  of  Aquatic  Food  Product 
Technology,  27(7),  844–858.  https://doi.org/10.1080/10498850.2018.
1500503 
Nilsang, S., Lertsiri, S., Suphantharika, M. & Assavanig, A. (2005). Optimization 
of  enzymatic  hydrolysis  of  sh  soluble  concentrate  by  commercial 
proteases.  Journal  of  Food  Engineering,  70(4),  571–578.  https://doi.
org/10.1016/j.jfoodeng.2004.10.011 
Norma ocial mexicana. NMX-F-428.1982. Normas Ocial Mexicanas para la 
determinación de humedad en alimentos.
Ovissipour,  M.,  Abedian,  A.,  Motamedzadegan,  A.,  Rasco,  B.,  Safari,  R. 
&  Shahiri,  H.  (2009).  The  effect  of  enzymatic  hydrolysis  time  and 
temperature  on  the  properties  of  protein  hydrolysates  from  Persian 
sturgeon (Acipenser persicus) viscera.  Food Chemistry, 115(1), 238–
242. https://doi.org/10.1016/j.foodchem.2008.12.013 
Ovissipour,  M.,  Abedian-Kenari,  A.,  Motamedzadegan,  A.  &  Nazari,  R.M. 
(2012).  Optimization  of  Enzymatic  Hydrolysis  of  Visceral  Waste 
Proteins of Yellown Tuna (Thunnus albacares). Food and Bioprocess 
Technology, 5(2), 696–705. https://doi.org/10.1007/s11947-010-0357-x 
See, S.F., Hoo, L.L. & Babji, A.S. (2011). Optimization of enzymatic hydrolysis 
of salmon (Salmo salar) skin by Alcalase. International Food Research 
Journal, 18(4), 1359–1365. https://cutt.ly/GQOLHOd 
Šližyte, R., Carvajal, A.K., Mozuraityte, R., Aursand, M. & Storrø, I. (2014). 
Nutritionally rich marine proteins from fresh herring by-products for 
human consumption. Process Biochemistry, 49(7), 1205–1215. https://
doi.org/10.1016/j.procbio.2014.03.012 
Souissi,  N.,  Bougatef, A.,  Triki-Ellouz, Y.  & Nasri, M.  (2007).  Biochemical 
and  functional properties  of  sardinella (Sardinetta  aurita) by-product 
hydrolysates.  Food  Technology  and  Biotechnology,  45(2),  187–194. 
https://hrcak.srce.hr/27772 
Taheri, A., Anvar, S.A.A., Ahari,  H. &  Fogliano, V. (2013).  Comparison the 
functional properties of protein Hydrolysates from poultry byproducts