991
Esta publicación científica en formato digital es continuación de la Revista Impresa: Depósito legal pp 196802ZU42, ISSN 0378-7818.
Rev. Fac. Agron. (LUZ). 2021, 38(4): 970-992. Octubre-Diciembre.
  Moncayo et al.  ISSN 2477-9407
Bumgardner, E., W. Kittichotirat, R. 
Bumgarner and P. Lawrence. 2015. 
Comparative genomic analysis of 
seven  Mycoplasma hyosynoviae 
strains. Microbiologyopen, 4(2),343-
359. 
Briner, A, P. Donohoue, A. Gomaa, K. Selle, 
E. Slorach, C. Nye and R. Barrangou. 
2014. Guide RNA functional 
modules direct Cas9 activity and 
orthogonality. Mol. Cell, 56(2),333-
339. 
Briner, A., E. Henriksen and R. Barrangou. 
2016. Prediction and validation of 
native and engineered Cas9 guide 
sequences. Cold Spring Harb. Protoc., 
2016(7),pdb-prot086785. 
Chylinski, K., A. Le Rhun and E. 
Charpentier. 2013. The tracrRNA 
and Cas9 families of type II CRISPR-
Cas immunity systems.
 RNA Biology, 
10(5),726-737. 
Chyou, T. and C. Brown. 2019. Prediction 
and diversity of tracrRNAs from 
type II CRISPR-Cas systems. RNA 
Biology, 16(4),423-434. 
Couvin, D., Bernheim, A., Toffano-Nioche, 
C., Touchon, M., Michalik, J., 
Néron, B., Rocha, E., Vergnaud, 
G., Gautheret, D. and Pourcel, 
C. 2018. CRISPRCasFinder, an 
update of CRISRFinder, includes 
a portable version, enhanced 
performance and integrates search 
for Cas proteins. Nucleic Acids Res., 
46(W1),W246-W251. 
De Vos, W. 2017. Microbe Prole: Akkermansia 
muciniphila: a conserved intestinal 
symbiont that acts as the gatekeeper 
of our mucosa. Microbiology, 
165(5),646-648. 
Dupuis, N., E. Holmstrom and D. Nesbitt, 
D. 2014. Molecular-crowding effects 
on single-molecule RNA folding/
unfolding thermodynamics and 
kinetics. Proc. Natl. Acad. Sci. U. S. 
A., 111(23),8464-8469. 
Høyland-Kroghsbo, N., K. Muñoz and B. 
Bassler, B. 2018. Temperature, by 
controlling growth rate, regulates 
CRISPR-Cas activity in Pseudomonas 
aeruginosa
. mBio, 9(6),e02184-18.
Ipoutcha, T., Tsarmpopoulos, I., Talenton, 
V., Gaspin, C., Moisan, A., Walker, 
C. A., Brownlie, J., Blanchard, A., 
Thebault, P. and Sirand-Pugnet, P. 
2019.  Multiple  origins  and  specic 
evolution of CRISPR/Cas9 systems in 
minimal bacteria (Mollicutes). Front. 
Microbiol., 10(2701),1-14. 
Jinek, M., Chylinski, K., Fonfara, I., Hauer, 
M., Doudna, J. A., and Charpentier, 
E. 2012. A programmable dual-
RNA–guided DNA endonuclease in 
adaptive bacterial immunity. Science, 
337(6096),816-821.  
Ka, D., Jang, D. M., Han, B. W., Bae, E. 2018. 
Molecular organization of the type 
II-A CRISPR adaptation module and 
its interaction with Cas9 via Csn2. 
Nucleic Acids Res., 46(18),9805-9815. 
Kaushik, I., S. Ramachanrdan and S. 
Srivastava. 2019. CRISPR-Cas9: A 
multifaceted therapeutic strategy for 
cancer treatment. Semin. Cell Dev. 
Biol., 96(1),4-12. 
Kunin, V., R. Sorek and P. Hugenholtz. 
2007. Evolutionary conservation of 
sequence and secondary structures 
in CRISPR repeats. Genome Biol., 
8(4),R61. 
Kube, M., C. Siewert, A. Migdoll, B. Duduk, 
S. Holz, R. Rabus and R. Reinhardt. 
2014. Analysis of the Complete 
Genomes of Acholeplasma brassicae, 
A. palmae and A. laidlawii and their 
comparison to the obligate parasites 
from ‘Candidatus Phytoplasma
’. J. 
Mol. Microbiol. Biotechnol., 24(1),19-
36. 
Lau, V. and J. Davie. 2017. The discovery and 
development of the CRISPR system in 
applications in genome manipulation. 
Biochem. Cell Biol., 95(2),203–210. 
Makarova, K., D. Haft, R. Barrangou, S. 
Brouns, E. Charpentier, P. Horvath 
and J. Van Der Oost. 2011. Evolution 
and  classication  of  the  CRISPR–
Cas systems. Nat. Rev. Microbiol., 
9(6),467-477.  
Mirabelli, P., L. Coppola and M. Salvatore. 
2019. Cancer Cell Lines Are Useful 
Model Systems for Medical Research. 
Cancer, 11(8),1098-1116.