213
Esta publicación cientíca en formato digital es continuación de la Revista Impresa: Depósito legal pp 196802ZU42, ISSN 0378-7818.
Rev. Fac. Agron. (LUZ). 2021, 38: 199-215. Enero-Marzo.
  Fonseca  et al.  ISSN 2477-9407
Colares,  G.  S.,  N.  Dell’Osbel,  P.  G.  Wiesel, 
G.  A.  Oliveira,  P.  H.  Z.  Lemos,  F. 
P.  da  Silva,  C.  A.  Lutterbeck,  L.  T. 
Kist y Ê. L. Machado. 2020. Floating 
treatment  wetlands:  A  review  and 
bibliometric analysis.  Sci.  Entorno 
total. 714:136776.
Dinwiddie, E. y X. M. Liu. 2018. Examining 
the  Geologic  Link  of  Arsenic 
Contamination in Groundwater in 
Orange  County,  North  Carolina. 
Front. Earth Sci. 6:111. 
He, J. y J. P. Chen. 2014. A comprehensive 
review  on  biosorption  of  heavy 
metals  by  algal  biomass:  Materials, 
performances, chemistry, and 
modeling simulation tools. Bioresour. 
Technol. 160: 67-78.
He,  Y.,  H.  Lin,  X.  Jin,  Y.  Dong  y  M.  Luo. 
2020.  Simultaneous  reduction  of 
arsenic  and  cadmium  bioavailability 
in  agriculture  soil  and  their 
accumulation in Brassica chinensis L. 
by using minerals. Ecotoxicol. Reinar. 
Saf. 198:110660.
Ismail,  I.,  T.  Mostafa,  A.  Sulaymon  y  S. 
Abbas.  2014.  Bisorption  of  heavy 
metals: A review. JCST. 3:74.
Kusin, F. M., S. N. M. S. Hasan, N. A. Nordin, 
F. Mohamat-Yusuff y Z. Z. Ibrahim. 
2019.  Floating  Vetiver  island  (FVI) 
and implication for treatment system 
design  of  polluted  running  water. 
Appl.  Ecol.  Environ.  Res.  17(1):497-
510.
Ladislas,  S.,  C.  Gérente,  F.  Chazarenc,  J. 
Brisson, y Y.  Andrès, 2015. Floating 
treatment  wetlands  for  heavy  metal 
removal  in  highway  stormwater 
ponds. Ecol. Ing. 80:85-91.
Lara,  S.  y  R.  Navarro.  Resultados  y 
Lecciones  en  Sistema  Vetiver 
para  descontaminación  de  agua  y 
aumento de su disponibilidad para 
riego.  2017.  Fundación  para  la 
Innovación Agraria (FIA). Chile. 48p. 
Disponible en: https://www.opia.cl/
static/website/601/articles-87024_
archivo_01.pdf.  Fecha  de  consulta: 
diciembre 2019.
Li, Y., X.  Zhu, X.  Qi, B. Shu,  X. Zhang, K. 
Li, Y. Wei, F. Hao y H. Wang. 2020. 
Efcient  removal  of  arsenic  from 
copper  smelting  wastewater  in  form 
of  scorodite  using  copper  slag.  J. 
Clean. Prod. 270:122428.
Martínez-Peña, L., y C. López-Candela. 2018. 
Islas otantes como estrategia para el 
establecimiento de plantas acuáticas 
en  el  Jardín  Botánico  de  Bogotá. 
Gestión y Ambiente. 21(1):110-120.
Mathew,  M., Sr. C. Rosary.  M.  Sebastian  y 
S.  M.  Cherian.  2016.  Effectiveness 
of Vetiver System  for the  Treatment 
of Wastewater from an Institutional 
Kitchen.  Procedia  Technology. 
24:203-209.
Mondal,  P., C. B.  Majumder  y B. Mohanty. 
2006. Laboratory based approaches 
for arsenic remediation from 
contaminated water: Recent 
developments.  J.  Hazard.  Mater. 
137(1):464-479.
Morales-Simfors,  N.,  J.  Bundschuh,  I. 
Herath, C. Inguaggiato, A. T. Caselli, 
J.  Tapia,  F.  E.  A.  Choquehuayta, 
M. A. Armienta, M. Ormachea, E. 
Joseph y D. L. López. 2019. Arsenic 
in Latin America: A critical overview 
on  the  geochemistry  of  arsenic 
originating from geothermal features 
and  volcanic  emissions  for  solving 
its  environmental consequences. Sci. 
Total Environ. 716:135564.
Ning, R. Y. 2005. Arsenic in Natural Waters. 
p. 81-83. In: J. H. Lehr y J. Keeley 
(Eds.).  Water  Encyclopedia.  First 
edition. John Wiley & Sons, Inc.
Pilon-Smits,  E.  2005.  Phytoremediation. 
Annu Rev Plant Biol. 56(1):15-39.
Pincetti-Zúniga,  G.  P.,  L.  A.  Richards,  Y. 
M. Tun, H.  P. Aung, A. K.  Swar, U. 
P. Reh, T. Khaing, M.  M. Hlaing, T. 
A.  Myint,  M.  L.  Nwe  y  D.  A.  Polya. 
2020.  Major  and  trace  (including 
arsenic)  groundwater  chemistry  in 
central and southern Myanmar. Appl. 
Geochemistry. 115:104535. 
Prasad, M. N. V. 2003. Phytoremediation of 
Metal-Polluted Ecosystems: Hype for 
Commercialization. Russ. J. Plant 
Physiol. 50(5):686-701. 
Praveen,  A., S. Mehrotra  y  N. Singh. 2019. 
Mixed plantation of wheat and 
accumulators in arsenic contaminated